paddle ocr v4 2.6.1实战笔记

目录

效果图:

安装

模型权重是自动下载,如果提前下载会报错。

识别orc,并opencv可视化结果,支持中文可视化

官方原版预测可视化:


效果图:

安装

安装2.5.2识别结果为空

pip install paddlepaddle-gpu==2.6.1

模型权重是自动下载,如果提前下载会报错。

测试代码:


import os
import time
from paddleocr import PaddleOCR

filepath = r"weights/123.jpg"

ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,
                det_db_box_thresh=0.1, use_dilation=True,
                det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',
                cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',
                rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')

t1 = time.time()
for i in range(1):
    result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
t2 = time.time()
print((t2-t1) / 10)

for res_str in result:
    print(res_str)

识别orc,并opencv可视化结果,支持中文可视化

import codecs
import os
import time

import cv2
import numpy as np
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw

from paddleocr import PaddleOCR

filepath = r"weights/124.jpg"

ocr_model = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True, show_log=1,
                det_db_box_thresh=0.1, use_dilation=True,
                det_model_dir='weight/ch_PP-OCRv4_det_server_infer.tar',
                cls_model_dir='weight/ch_ppocr_mobile_v2.0_cls_infer.tar',
                rec_model_dir='weight/ch_PP-OCRv4_rec_server_infer.tar')

t1 = time.time()
for i in range(1):
    result = ocr_model.ocr(img=filepath, det=True, rec=True, cls=True)[0]
t2 = time.time()
print((t2-t1) / 10)

font_path = 'simhei.ttf'  # 需要替换为你的中文字体路径
font = ImageFont.truetype(font_path, 24)
def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):
    img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(img)
    draw.text(position, text, textColor, font=font)
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

image=cv2.imread(filepath)

ocr_index=0
for res_str in result:
    if res_str[0][0][0]>36 and res_str[0][2][0]<84:
        print(ocr_index,res_str)
        points=res_str[0]
        text = res_str[1][0]
        points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
        cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
        text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置

        # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
        image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
        print(ocr_index)
    if res_str[0][0][0]>346 and res_str[0][2][0]<391:
        print(ocr_index,res_str)
        points=res_str[0]
        text = res_str[1][0]
        points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
        cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
        text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置

        # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
        image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)
    if res_str[0][0][0]>658 and res_str[0][2][0]<705:
        print(ocr_index,res_str)
        points=res_str[0]
        text=res_str[1][0]
        points=np.array(points,dtype=np.int32).reshape((-1, 1, 2))
        cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
        text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置
        image= cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)

cv2.imshow('Image with Rectangle and Text', image)
cv2.waitKey(0)

官方原版预测可视化:

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import importlib

__dir__ = os.path.dirname(__file__)

import paddle
from paddle.utils import try_import

sys.path.append(os.path.join(__dir__, ""))

import cv2
import logging
import numpy as np
from pathlib import Path
import base64
from io import BytesIO
from PIL import Image, ImageFont, ImageDraw
from tools.infer import predict_system


def _import_file(module_name, file_path, make_importable=False):
    spec = importlib.util.spec_from_file_location(module_name, file_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    if make_importable:
        sys.modules[module_name] = module
    return module


tools = _import_file("tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True)
ppocr = importlib.import_module("ppocr", "paddleocr")
ppstructure = importlib.import_module("ppstructure", "paddleocr")
from ppocr.utils.logging import get_logger

logger = get_logger()
from ppocr.utils.utility import (check_and_read, get_image_file_list, alpha_to_color, binarize_img, )
from ppocr.utils.network import (maybe_download, download_with_progressbar, is_link, confirm_model_dir_url, )
from tools.infer.utility import draw_ocr, str2bool, check_gpu
from ppstructure.utility import init_args, draw_structure_result
from ppstructure.predict_system import StructureSystem, save_structure_res, to_excel

logger = get_logger()
__all__ = ["PaddleOCR", "PPStructure", "draw_ocr", "draw_structure_result", "save_structure_res", "download_with_progressbar", "to_excel", ]

SUPPORT_DET_MODEL = ["DB"]
VERSION = "2.8.0"
SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
BASE_DIR = os.path.expanduser("~/.paddleocr/")

DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
MODEL_URLS = {"OCR": {"PP-OCRv4": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },
    "ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },
    "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
        "korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
        "japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
        "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
        "ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
        "te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
        "ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
        "latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
        "arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
        "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
        "devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },
    "PP-OCRv3": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar", },
        "ml": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"}, },
        "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }, "en": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
            "korean": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
            "japan": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
            "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
            "ta": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
            "te": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
            "ka": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
            "latin": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
            "arabic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
            "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
            "devanagari": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, },
    "PP-OCRv2": {"det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar", }, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", }},
        "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, "PP-OCR": {
        "det": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar", }, "en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar", },
            "structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"}, }, "rec": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/ppocr_keys_v1.txt", },
            "en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/en_dict.txt", },
            "french": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/french_dict.txt", },
            "german": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/german_dict.txt", },
            "korean": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/korean_dict.txt", },
            "japan": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/japan_dict.txt", },
            "chinese_cht": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt", },
            "ta": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ta_dict.txt", },
            "te": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/te_dict.txt", },
            "ka": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/ka_dict.txt", },
            "latin": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/latin_dict.txt", },
            "arabic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/arabic_dict.txt", },
            "cyrillic": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt", },
            "devanagari": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar", "dict_path": "./ppocr/utils/dict/devanagari_dict.txt", },
            "structure": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar", "dict_path": "ppocr/utils/dict/table_dict.txt", }, }, "cls": {"ch": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar", }}, }, },
    "STRUCTURE": {"PP-Structure": {"table": {"en": {"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", }}}, "PP-StructureV2": {
        "table": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict.txt", },
            "ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar", "dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt", }, },
        "layout": {"en": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt", },
            "ch": {"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar", "dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt", }, }, }, }, }


def parse_args(mMain=True):
    import argparse

    parser = init_args()
    parser.add_help = mMain
    parser.add_argument("--lang", type=str, default="ch")
    parser.add_argument("--det", type=str2bool, default=True)
    parser.add_argument("--rec", type=str2bool, default=True)
    parser.add_argument("--type", type=str, default="ocr")
    parser.add_argument("--savefile", type=str2bool, default=False)
    parser.add_argument("--ocr_version", type=str, choices=SUPPORT_OCR_MODEL_VERSION, default="PP-OCRv4", help="OCR Model version, the current model support list is as follows: "
                                                                                                               "1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model"
                                                                                                               "2. PP-OCRv2 Support Chinese detection and recognition model. "
                                                                                                               "3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.", )
    parser.add_argument("--structure_version", type=str, choices=SUPPORT_STRUCTURE_MODEL_VERSION, default="PP-StructureV2", help="Model version, the current model support list is as follows:"
                                                                                                                                 " 1. PP-Structure Support en table structure model."
                                                                                                                                 " 2. PP-StructureV2 Support ch and en table structure model.", )

    for action in parser._actions:
        if action.dest in ["rec_char_dict_path", "table_char_dict_path", "layout_dict_path", ]:
            action.default = None
    if mMain:
        return parser.parse_args()
    else:
        inference_args_dict = {}
        for action in parser._actions:
            inference_args_dict[action.dest] = action.default
        return argparse.Namespace(**inference_args_dict)


def parse_lang(lang):
    latin_lang = ["af", "az", "bs", "cs", "cy", "da", "de", "es", "et", "fr", "ga", "hr", "hu", "id", "is", "it", "ku", "la", "lt", "lv", "mi", "ms", "mt", "nl", "no", "oc", "pi", "pl", "pt", "ro", "rs_latin", "sk", "sl", "sq", "sv", "sw", "tl", "tr", "uz", "vi", "french", "german", ]
    arabic_lang = ["ar", "fa", "ug", "ur"]
    cyrillic_lang = ["ru", "rs_cyrillic", "be", "bg", "uk", "mn", "abq", "ady", "kbd", "ava", "dar", "inh", "che", "lbe", "lez", "tab", ]
    devanagari_lang = ["hi", "mr", "ne", "bh", "mai", "ang", "bho", "mah", "sck", "new", "gom", "sa", "bgc", ]
    if lang in latin_lang:
        lang = "latin"
    elif lang in arabic_lang:
        lang = "arabic"
    elif lang in cyrillic_lang:
        lang = "cyrillic"
    elif lang in devanagari_lang:
        lang = "devanagari"
    assert (lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]), "param lang must in {}, but got {}".format(MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang)
    if lang == "ch":
        det_lang = "ch"
    elif lang == "structure":
        det_lang = "structure"
    elif lang in ["en", "latin"]:
        det_lang = "en"
    else:
        det_lang = "ml"
    return lang, det_lang


def get_model_config(type, version, model_type, lang):
    if type == "OCR":
        DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSION
    elif type == "STRUCTURE":
        DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSION
    else:
        raise NotImplementedError

    model_urls = MODEL_URLS[type]
    if version not in model_urls:
        version = DEFAULT_MODEL_VERSION
    if model_type not in model_urls[version]:
        if model_type in model_urls[DEFAULT_MODEL_VERSION]:
            version = DEFAULT_MODEL_VERSION
        else:
            logger.error("{} models is not support, we only support {}".format(model_type, model_urls[DEFAULT_MODEL_VERSION].keys()))
            sys.exit(-1)

    if lang not in model_urls[version][model_type]:
        if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:
            version = DEFAULT_MODEL_VERSION
        else:
            logger.error("lang {} is not support, we only support {} for {} models".format(lang, model_urls[DEFAULT_MODEL_VERSION][model_type].keys(), model_type, ))
            sys.exit(-1)
    return model_urls[version][model_type][lang]


def img_decode(content: bytes):
    np_arr = np.frombuffer(content, dtype=np.uint8)
    return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)


def check_img(img, alpha_color=(255, 255, 255)):
    """
    Check the image data. If it is another type of image file, try to decode it into a numpy array.
    The inference network requires three-channel images, So the following channel conversions are done
        single channel image: Gray to RGB R←Y,G←Y,B←Y
        four channel image: alpha_to_color
    args:
        img: image data
            file format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formats
            storage type: binary image, net image file, local image file
        alpha_color: Background color in images in RGBA format
        return: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean
    """
    flag_gif, flag_pdf = False, False
    if isinstance(img, bytes):
        img = img_decode(img)
    if isinstance(img, str):
        # download net image
        if is_link(img):
            download_with_progressbar(img, "tmp.jpg")
            img = "tmp.jpg"
        image_file = img
        img, flag_gif, flag_pdf = check_and_read(image_file)
        if not flag_gif and not flag_pdf:
            with open(image_file, "rb") as f:
                img_str = f.read()
                img = img_decode(img_str)
            if img is None:
                try:
                    buf = BytesIO()
                    image = BytesIO(img_str)
                    im = Image.open(image)
                    rgb = im.convert("RGB")
                    rgb.save(buf, "jpeg")
                    buf.seek(0)
                    image_bytes = buf.read()
                    data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")
                    image_decode = base64.b64decode(data_base64)
                    img_array = np.frombuffer(image_decode, np.uint8)
                    img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
                except:
                    logger.error("error in loading image:{}".format(image_file))
                    return None, flag_gif, flag_pdf
        if img is None:
            logger.error("error in loading image:{}".format(image_file))
            return None, flag_gif, flag_pdf
    # single channel image array.shape:h,w
    if isinstance(img, np.ndarray) and len(img.shape) == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    # four channel image array.shape:h,w,c
    if isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:
        img = alpha_to_color(img, alpha_color)
    return img, flag_gif, flag_pdf


class PaddleOCR(predict_system.TextSystem):
    def __init__(self, **kwargs):
        """
        paddleocr package
        args:
            **kwargs: other params show in paddleocr --help
        """
        params = parse_args(mMain=False)
        params.__dict__.update(**kwargs)
        assert (params.ocr_version in SUPPORT_OCR_MODEL_VERSION), "ocr_version must in {}, but get {}".format(SUPPORT_OCR_MODEL_VERSION, params.ocr_version)
        params.use_gpu = check_gpu(params.use_gpu)

        if not params.show_log:
            logger.setLevel(logging.INFO)
        self.use_angle_cls = params.use_angle_cls
        lang, det_lang = parse_lang(params.lang)

        # init model dir
        det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
        params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )
        rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
        params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )
        cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")
        params.cls_model_dir, cls_url = confirm_model_dir_url(params.cls_model_dir, os.path.join(BASE_DIR, "whl", "cls"), cls_model_config["url"], )
        if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:
            params.rec_image_shape = "3, 48, 320"
        else:
            params.rec_image_shape = "3, 32, 320"
        # download model if using paddle infer
        if not params.use_onnx:
            maybe_download(params.det_model_dir, det_url)
            maybe_download(params.rec_model_dir, rec_url)
            maybe_download(params.cls_model_dir, cls_url)

        if params.det_algorithm not in SUPPORT_DET_MODEL:
            logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))
            sys.exit(0)
        if params.rec_algorithm not in SUPPORT_REC_MODEL:
            logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))
            sys.exit(0)

        if params.rec_char_dict_path is None:
            params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])

        logger.debug(params)
        # init det_model and rec_model
        super().__init__(params)
        self.page_num = params.page_num

    def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, alpha_color=(255, 255, 255), ):
        """
        OCR with PaddleOCR

        args:
            img: img for OCR, support ndarray, img_path and list or ndarray
            det: use text detection or not. If False, only rec will be exec. Default is True
            rec: use text recognition or not. If False, only det will be exec. Default is True
            cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
            bin: binarize image to black and white. Default is False.
            inv: invert image colors. Default is False.
            alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
        """
        assert isinstance(img, (np.ndarray, list, str, bytes))
        if isinstance(img, list) and det == True:
            logger.error("When input a list of images, det must be false")
            exit(0)
        if cls == True and self.use_angle_cls == False:
            logger.warning("Since the angle classifier is not initialized, it will not be used during the forward process")

        img, flag_gif, flag_pdf = check_img(img, alpha_color)
        # for infer pdf file
        if isinstance(img, list) and flag_pdf:
            if self.page_num > len(img) or self.page_num == 0:
                imgs = img
            else:
                imgs = img[: self.page_num]
        else:
            imgs = [img]

        def preprocess_image(_image):
            _image = alpha_to_color(_image, alpha_color)
            if inv:
                _image = cv2.bitwise_not(_image)
            if bin:
                _image = binarize_img(_image)
            return _image

        if det and rec:
            ocr_res = []
            for idx, img in enumerate(imgs):
                img = preprocess_image(img)
                dt_boxes, rec_res, _ = self.__call__(img, cls)
                if not dt_boxes and not rec_res:
                    ocr_res.append(None)
                    continue
                tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
                ocr_res.append(tmp_res)
            return ocr_res
        elif det and not rec:
            ocr_res = []
            for idx, img in enumerate(imgs):
                img = preprocess_image(img)
                dt_boxes, elapse = self.text_detector(img)
                if dt_boxes.size == 0:
                    ocr_res.append(None)
                    continue
                tmp_res = [box.tolist() for box in dt_boxes]
                ocr_res.append(tmp_res)
            return ocr_res
        else:
            ocr_res = []
            cls_res = []
            for idx, img in enumerate(imgs):
                if not isinstance(img, list):
                    img = preprocess_image(img)
                    img = [img]
                if self.use_angle_cls and cls:
                    img, cls_res_tmp, elapse = self.text_classifier(img)
                    if not rec:
                        cls_res.append(cls_res_tmp)
                rec_res, elapse = self.text_recognizer(img)
                ocr_res.append(rec_res)
            if not rec:
                return cls_res
            return ocr_res


class PPStructure(StructureSystem):
    def __init__(self, **kwargs):
        params = parse_args(mMain=False)
        params.__dict__.update(**kwargs)
        assert (params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION), "structure_version must in {}, but get {}".format(SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version)
        params.use_gpu = check_gpu(params.use_gpu)
        params.mode = "structure"

        if not params.show_log:
            logger.setLevel(logging.INFO)
        lang, det_lang = parse_lang(params.lang)
        if lang == "ch":
            table_lang = "ch"
        else:
            table_lang = "en"
        if params.structure_version == "PP-Structure":
            params.merge_no_span_structure = False

        # init model dir
        det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
        params.det_model_dir, det_url = confirm_model_dir_url(params.det_model_dir, os.path.join(BASE_DIR, "whl", "det", det_lang), det_model_config["url"], )
        rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
        params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir, os.path.join(BASE_DIR, "whl", "rec", lang), rec_model_config["url"], )
        table_model_config = get_model_config("STRUCTURE", params.structure_version, "table", table_lang)
        params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir, os.path.join(BASE_DIR, "whl", "table"), table_model_config["url"], )
        layout_model_config = get_model_config("STRUCTURE", params.structure_version, "layout", lang)
        params.layout_model_dir, layout_url = confirm_model_dir_url(params.layout_model_dir, os.path.join(BASE_DIR, "whl", "layout"), layout_model_config["url"], )
        # download model
        if not params.use_onnx:
            maybe_download(params.det_model_dir, det_url)
            maybe_download(params.rec_model_dir, rec_url)
            maybe_download(params.table_model_dir, table_url)
            maybe_download(params.layout_model_dir, layout_url)

        if params.rec_char_dict_path is None:
            params.rec_char_dict_path = str(Path(__file__).parent / rec_model_config["dict_path"])
        if params.table_char_dict_path is None:
            params.table_char_dict_path = str(Path(__file__).parent / table_model_config["dict_path"])
        if params.layout_dict_path is None:
            params.layout_dict_path = str(Path(__file__).parent / layout_model_config["dict_path"])
        logger.debug(params)
        super().__init__(params)

    def __call__(self, img, return_ocr_result_in_table=False, img_idx=0, alpha_color=(255, 255, 255), ):
        img, flag_gif, flag_pdf = check_img(img, alpha_color)
        if isinstance(img, list) and flag_pdf:
            res_list = []
            for index, pdf_img in enumerate(img):
                logger.info("processing {}/{} page:".format(index + 1, len(img)))
                res, _ = super().__call__(pdf_img, return_ocr_result_in_table, img_idx=index)
                res_list.append(res)
            return res_list
        res, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)
        return res
def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):
    img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(img)
    draw.text(position, text, textColor, font=font)
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

if __name__ == '__main__':

    font_path = 'simhei.ttf'  # 需要替换为你的中文字体路径
    font = ImageFont.truetype(font_path, 24)


    # for cmd
    args = parse_args(mMain=True)
    image_dir = args.image_dir
    image_file_list=['weights/123.jpg']
    if args.type == "ocr":
        engine = PaddleOCR(**(args.__dict__))
    elif args.type == "structure":
        engine = PPStructure(**(args.__dict__))
    else:
        raise NotImplementedError

    for img_path in image_file_list:
        img_name = os.path.basename(img_path).split(".")[0]
        logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))
        if args.type == "ocr":
            image=cv2.imread(img_path)
            result = engine.ocr(img_path, det=args.det, rec=args.rec, cls=args.use_angle_cls, bin=args.binarize, inv=args.invert, alpha_color=args.alphacolor, )
            if result is not None:
                lines = []
                for idx in range(len(result)):
                    res = result[idx]
                    for line in res:

                        points = line[0]
                        text = line[1][0]
                        points = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
                        cv2.polylines(image, [points], isClosed=True, color=(255, 0, 0), thickness=2)
                        text_position = (int(points[0][0][0]), int(points[0][0][1] + 20))  # 微调文本位置

                        # cv2.putText(image, '中文文本', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3)
                        image = cv2AddChineseText(image, text, text_position, textColor=(0, 255, 0), textSize=30)

                        logger.info(line)
                        val = "["
                        for box in line[0]:
                            val += str(box[0]) + "," + str(box[1]) + ","

                        val = val[:-1]
                        val += "]," + line[1][0] + "," + str(line[1][1]) + "\n"
                        lines.append(val)
                if args.savefile:
                    if os.path.exists(args.output) is False:
                        os.mkdir(args.output)
                    outfile = args.output + "/" + img_name + ".txt"
                    with open(outfile, "w", encoding="utf-8") as f:
                        f.writelines(lines)

        elif args.type == "structure":
            img, flag_gif, flag_pdf = check_and_read(img_path)
            if not flag_gif and not flag_pdf:
                img = cv2.imread(img_path)

            if not flag_pdf:
                if img is None:
                    logger.error("error in loading image:{}".format(img_path))
                    continue
                img_paths = [[img_path, img]]
            else:
                img_paths = []
                for index, pdf_img in enumerate(img):
                    os.makedirs(os.path.join(args.output, img_name), exist_ok=True)
                    pdf_img_path = os.path.join(args.output, img_name, img_name + "_" + str(index) + ".jpg")
                    cv2.imwrite(pdf_img_path, pdf_img)
                    img_paths.append([pdf_img_path, pdf_img])

            all_res = []
            for index, (new_img_path, img) in enumerate(img_paths):
                logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))
                new_img_name = os.path.basename(new_img_path).split(".")[0]
                result = engine(img, img_idx=index)
                save_structure_res(result, args.output, img_name, index)

                if args.recovery and result != []:
                    from copy import deepcopy
                    from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes

                    h, w, _ = img.shape
                    result_cp = deepcopy(result)
                    result_sorted = sorted_layout_boxes(result_cp, w)
                    all_res += result_sorted

            if args.recovery and all_res != []:
                try:
                    from ppstructure.recovery.recovery_to_doc import convert_info_docx

                    convert_info_docx(img, all_res, args.output, img_name)
                except Exception as ex:
                    logger.error("error in layout recovery image:{}, err msg: {}".format(img_name, ex))
                    continue

            for item in all_res:
                item.pop("img")
                item.pop("res")
                logger.info(item)
            logger.info("result save to {}".format(args.output))

        cv2.imshow('image', image)
        cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/620423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次

【新智元导读】美军战斗机&#xff0c;能由AI完成自主空战了&#xff01;最近&#xff0c;美国空军部长Kendall亲自试驾了国防部正在研制的X-62A AI飞机。1小时的飞行过程中&#xff0c;Kendall全程未干预&#xff0c;所有动作都由AI自主完成。 最近&#xff0c;军事圈被这个消…

长途火车~48小时记录

1.出门记得带大功率充电宝&#xff0c;最好是50000ma及以上的&#xff0c;不然还没上火车&#xff0c;手机就没电了&#xff0c;电量焦虑症又来了。手机有电就有无限可能。

PSFR-GAN复现

写在前面&#xff1a;本博客仅作记录学习之用&#xff0c;部分图片来自网络&#xff0c;如需引用请注明出处&#xff0c;同时如有侵犯您的权益&#xff0c;请联系删除&#xff01; 文章目录 前言快速开始安装依赖权重下载及复原 训练网络数据集训练脚本 代码详解训练BaseOptio…

JavaScript APIs

控制网页元素交互等各种网页交互效果。 一、Web API基本认知 声明数组和变量优先使用const 使用let声明变量的情况&#xff1a; 1、如果基本数据类型的值或者引用类型的地址发生变化的时候&#xff0c;需要用let 2、比如 一个变量进行加减运算&#xff0c;比如 for循环中的…

如何通过香港站群服务器高效实现网站内容的快速更新?

如何通过香港站群服务器高效实现网站内容的快速更新? 在当今激烈的数字市场竞争中&#xff0c;网站内容的快速更新对于吸引用户和保持竞争优势至关重要。而利用香港站群服务器实现这一目标&#xff0c;则具备诸多优势。下面将详细探讨如何通过香港站群服务器高效实现网站内容…

codeblock couldn‘t create project directory :path

1.原因&#xff1a; 因为我使用的是mac虚拟机&#xff0c;所以路径跟window不太一样&#xff0c;可能导致codeblock找不到路径&#xff0c;所以无法创建。 2.换一个跟window文件路径相同的就好&#xff0c;例如 C:\programPractice\myProject\

微火全域运营指南:如何选择靠谱的全域运营平台

当前&#xff0c;全域运营成为了一条全新的创业赛道&#xff0c;不少想要做全域运营服务商的创业者开始在各种渠道打听全域运营平台的相关消息&#xff0c;以此作为全域运营平台选择的依据。但其实&#xff0c;全域运营平台根本不用选择。 为什么这么说&#xff1f;首先&#x…

5分钟学设计模式:简单工厂与美食街的不期而遇

大家好&#xff0c;我是知微。 写代码好几年&#xff0c;是不是还纠结于这些问题&#xff1a; 面对一堆if-else&#xff0c;代码越写越长&#xff0c;维护起来比攀登珠穆朗玛峰还难每次只敢小心翼翼改个小功能&#xff0c;生怕程序突然“嘭”一声&#xff0c;全炸了想学习大佬…

【VTKExamples::Rendering】第八期 TestHiddenLineRemoval

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享VTK样例TestHiddenLineRemoval,并解析接口vtkRenderer,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^…

怎么用电脑接收手机文件 用备忘录传输更舒服

在这个数字化时代&#xff0c;手机已经成为我们随身携带的“百宝箱”&#xff0c;里面装满了各种重要的文件、资料和信息。然而&#xff0c;有时我们需要在电脑上处理这些文件&#xff0c;比如编辑文档、制作PPT或是查看照片。那么&#xff0c;如何在电脑与手机之间实现文件的顺…

【C++后端项目】负载均衡OJ服务器

文章目录 一、演示项目二、所用技术与开发环境所用技术开发环境 三、项目宏观结构I. 风格&#xff1a;仿leetcodeII. 结构&#xff1a;Browser-Server模式III. 编写思路&#xff1a;编译服务 -> OJ服务 -> 前端设计 四、关于Git分支管理✨4.1 Git 分支结构4.2 Git 分支命…

APP反抓包 - 服务端证书验证

案例引入: app:泡泡聊天 版本:v1.7.4 发送登录请求,抓包发现提示:403 Forbidden 这里就是使用了服务端证书校验,因为charles没有安装证书,所以到达服务器的响应没有通过验证,返回异常。 美之图: 一,校验逻辑 在安卓开发时,在客户端预设证书(p12/bks),客户端…

【iOS】frame与bounds区别

文章目录 前言framebounds两者区别size的区别总结 前言 在学习响应者链的过程中用到了frame与bounds的混用&#xff0c;这两个属性经常出现在我们的开发中&#xff0c;特别撰写一篇博客分析区别 首先&#xff0c;我们来看一下iOS特有的坐标系&#xff0c;在iOS坐标系中以左上…

文档解析与向量化技术加速多模态大模型训练与应用

前言 随着人工智能技术的不断发展&#xff0c;多模态大模型作为一种新型的机器学习技术&#xff0c;逐渐成为人工智能领域的热点话题。多模态大模型能够处理多种媒体数据&#xff0c;如文本、图像、音频和视频等&#xff0c;并通过学习不同模态之间的关联&#xff0c;实现更加…

重生奇迹MU魔法师PK攻略详解

一、加点 力量和智力属性都可以增加命中&#xff0c;但对魔法师来说&#xff0c;力量属性不能增加攻击力&#xff0c;所以不需要点力量。敏捷属性可以提升魔法师的防御力&#xff0c;体力可以增加血量&#xff0c;这里可以选择智力为主&#xff0c;敏捷和体力为辅的加点方式&a…

(五)STM32F407 cubemx IIC驱动OLED(3)软件篇

这篇文章主要是个人的学习经验&#xff0c;想分享出来供大家提供思路&#xff0c;如果其中有不足之处请批评指正哈。   废话不多说直接开始主题&#xff0c;本人是基于STM32F407VET6芯片&#xff0c;但是意在你看懂这篇文章后&#xff0c;不管是F1,F4,H7等一系列系统硬件IIC配…

搭建网站式个人网盘-超仿Windows界面

搭建网站式个人网盘-超仿Windows界面 效果图部分源码领取源码下期更新预报 效果图 一款网站式个人网盘源码-Windows界面相等于一个网站式电脑可以放照片&#xff0c;视频-支持在线播放&#xff08;你懂的&#xff09;我觉得式一款很不错的个人网盘提醒&#xff1a;千万不要升级…

Docker学习(带图详细)

一、安装docker 参考官方文档&#xff1a;https://docs.docker.com/engine/install/centos/ 查看系统版本 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) [rootlocalhost ~]# [rootlocalhost ~]# uname -a Linux localhost.localdomai…

图生视频,Stable Diffusion WebUI Forge内置SVD了!

在 Stable Diffusion WebUI Forge 版本中内置了一个SVD插件&#xff0c;也就是 Stable Video Diffusion&#xff08;稳定视频扩散&#xff09;&#xff0c;之前我介绍过这个工具的使用方法&#xff1a;图片生成视频&#xff08;独立部署SVD) 但是当时还不能集成到Stable Diffu…