clear all;
close all;
clc;
%% 上面是调用卡尔曼滤波
% 定义状态维数和初始条件
n = 3; % 状态维数
q = 0.2; % 过程噪声标准差
r = 0.15; % 测量噪声标准差
Q = q * eye(n); % 过程噪声协方差矩阵
R = r^2; % 测量噪声协方差矩阵
fstate = @(x)[x(2); x(3); 0.5*x(1)*(x(2) + x(3))]; % 状态转移方程
hmeas = @(x)x(1); % 测量方程
% 初始化状态和协方差矩阵
s = [0; 0; 1]; % 真实初始状态
x = s + q * randn(3,1); % 加入噪声的初始状态估计
P = eye(n); % 初始状态协方差矩阵
% 模拟参数
N = 200; % 动态步数
xV = zeros(n, N); % 保存状态估计值
sV = zeros(n, N); % 保存真实状态值
zV = zeros(1, N); % 保存测量值
% 开始模拟
for k = 1:N
z = hmeas(s) + r * randn; % 模拟测量值
sV(:, k) = s; % 存储真实状态值
zV(k) = z; % 存储测量值
[x, P] = ukf(fstate, x, P, hmeas, z, Q, R); % 调用UKF
xV(:, k) = x; % 存储状态估计值
s = fstate(s) + q * randn(3, 1); % 更新真实状态
end
% 绘制结果
for k = 1:3
subplot(3, 1, k)
plot(1:N, sV(k, :), '-', 1:N, xV(k, :), '--')
title(['State ', num2str(k)])
legend('True State', 'Estimated State')
end
function X=sigmas(x,P,c)
%Sigma points around reference point
%Inputs:
% x: reference point
% P: covariance
% c: coefficient
%Output:
% X: Sigma points
A = c*chol(P)';
Y = x(:,ones(1,numel(x)));
X = [x Y+A Y-A];
end
function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)
%Unscented Transformation
%Input:
% f: nonlinear map
% X: sigma points
% Wm: weights for mean
% Wc: weights for covraiance
% n: numer of outputs of f
% R: additive covariance
%Output:
% y: transformed mean
% Y: transformed smapling points
% P: transformed covariance
% Y1: transformed deviations
L=size(X,2);
y=zeros(n,1);
Y=zeros(n,L);
for k=1:L
Y(:,k)=f(X(:,k));
y=y+Wm(k)*Y(:,k);
end
Y1=Y-y(:,ones(1,L));
P=Y1*diag(Wc)*Y1'+R;
end
function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)
% UKF Unscented Kalman Filter for nonlinear dynamic systems
% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P
% for nonlinear dynamic system (for simplicity, noises are assumed as additive):
% x_k+1 = f(x_k) + w_k
% z_k = h(x_k) + v_k
% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
% v ~ N(0,R) meaning v is gaussian noise with covariance R
% Inputs: f: function handle for f(x)
% x: "a priori" state estimate
% P: "a priori" estimated state covariance
% h: fanction handle for h(x)
% z: current measurement
% Q: process noise covariance
% R: measurement noise covariance
% Output: x: "a posteriori" state estimate
% P: "a posteriori" state covariance
%
% Example:
%{
n=3; %number of state
q=0.1; %std of process
r=0.1; %std of measurement
Q=q^2*eye(n); % covariance of process
R=r^2; % covariance of measurement
f=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equations
h=@(x)x(1); % measurement equation
s=[0;0;1]; % initial state
x=s+q*randn(3,1); %initial state % initial state with noise
P = eye(n); % initial state covraiance
N=20; % total dynamic steps
xV = zeros(n,N); %estmate % allocate memory
sV = zeros(n,N); %actual
zV = zeros(1,N);
for k=1:N
z = h(s) + r*randn; % measurments
sV(:,k)= s; % save actual state
zV(k) = z; % save measurment
[x, P] = ukf(f,x,P,h,z,Q,R); % ekf
xV(:,k) = x; % save estimate
s = f(s) + q*randn(3,1); % update process
end
for k=1:3 % plot results
subplot(3,1,k)
plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--')
end
%}
% Reference: Julier, SJ. and Uhlmann, J.K., Unscented Filtering and
% Nonlinear Estimation, Proceedings of the IEEE, Vol. 92, No. 3,
% pp.401-422, 2004.
%
% By Yi Cao at Cranfield University, 04/01/2008
%
L=numel(x); %numer of states
m=numel(z); %numer of measurements
alpha=1e-3; %default, tunable
ki=0; %default, tunable
beta=2; %default, tunable
lambda=alpha^2*(L+ki)-L; %scaling factor
c=L+lambda; %scaling factor
Wm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for means
Wc=Wm;
Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariance
c=sqrt(c);
X=sigmas(x,P,c); %sigma points around x
[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process
% X1=sigmas(x1,P1,c); %sigma points around x1
% X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1
[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurments
P12=X2*diag(Wc)*Z2'; %transformed cross-covariance
K=P12*inv(P2);
x=x1+K*(z-z1); %state update
P=P1-K*P12'; %covariance update
end