Python深度学习基于Tensorflow(9)注意力机制

文章目录

        • 注意力机制是怎么工作的
        • 注意力机制的类型
      • 构建Transformer模型
        • Embedding层
        • 注意力机制的实现
        • Encoder实现
        • Decoder实现
        • Transformer实现

注意力机制的主要思想是将注意力集中在信息的重要部分,对重要部分投入更多的资源,以获取更多所关注目标的细节信息,抑制其他无用信息;

在注意力机制的背景下,我们将自主性提示称为查询(Query)。对于给定任何查询,注意力机制通过集中注意力(Attention Pooling)选择感官输入(Sensory Input),这些感官输入被称为值(Value)。每个值都与其对应的非自主提示的一个键(Key)成对。通过集中注意力,为给定的查询(自主性提示)与键(非自主性提示)进行交互,从而引导选择偏向值;

注意力机制计算过程如下:

![[Pasted image 20240512132525.png]]

注意力机制是怎么工作的

图中有四个东西,QueryKeyValueAttention,图中把KeyValue放在了一起是因为其产生的output是与KeyValue的维度是无关的,只与Query的维度有关;文中把KeyValue称作为Context sequenceQuery还是称作为Query sequence;为什么要这么做?可以看模型中右上方的Multi-Head Attention和左下角的Multi-Head Attention的区别进行分析;

QueryKeyValue这三个东西可以用python中的字典来解释,KeyValue表示字典中的键值对,而Query表示我们需要查询的键,QueryKeyValue匹配其得到的结果就是我们需要的信息;但是在这里并不要求QueryKey严格匹配,只需要模糊匹配就可以;Query对每一个Key进行一次模糊的匹配,并给出匹配程度,越适配权重就越大,然后根据权重再与每一个Value进行组合,得到最后的结果;其匹配程度的权重就代表了注意力机制的权重;

多头注意力机制就是把QueryKeyValue多个维度的向量分为几个少数维度的向量组合,再在Query_iKey_iValue_i上进行操作,最后把结果合并;

注意力机制的类型

Transformer模型中Multi-Head Attention有三个, 这三个分别对应三种Multi-Head Attention Layerthe cross attention layerthe global self attention layerthe causal self attention layer,从图中也可以发现每一层都有各自的不同,下面来一一介绍;

the cross attention layer:模型右上角(解码器)的Multi-Head Attention是注意力机制最直接的使用,其将编码器的信息和解码器的信息充分的结合了起来,文中把这一层叫做the cross attention layer;其context sequenceEncoder中得到的;

在这里要注意的是,每一次的查询是可以看得到所有的KeyValue的,但是查询与查询相互之间是看不到的,即独立的;

the global self attention layer:模型左下角(编码器)的Multi-Head Attention,这一层负责处理上下文序列,并沿着他的长度去传播信息即QueryQuery之间的信息;

Query与Query之间的信息传播有很多种方式,例如在Transformer没出来之间我们普遍采用Bidirectional RNNsCNNs的方式来处理;

但是为什么这里不使用RNN和CNN的方法呢?

RNNCNN的限制

  • RNN 允许信息沿着序列一路流动,但是它要经过许多处理步骤才能到达那里(限制梯度流动)。这些 RNN 步骤必须按顺序运行,因此 RNN 不太能够利用现代并行设备的优势。
  • 在 CNN 中,每个位置都可以并行处理,但它只提供有限的接收场。接收场只随着 CNN 层数的增加而线性增长,需要叠加许多卷积层来跨序列传输信息(小波网通过使用扩张卷积来减少这个问题)。

the global self attention layer允许每个序列元素直接访问每个其他序列元素,只需少量操作,并且所有输出都可以并行计算。 就像下图这样:

虽然图像类似于线性层,其本质好像也是线性层,但是其信息传播能力要比普通的线性层要强;

the causal self attention layer:因果自注意层,这一层与the global self attention layer类似,其不同的特点是需要maskMasked Multi-Head Attention;这里要注意的是Transformer是一个自回归模型,每次产生一个输出并且把输出当作输入用来继续产生输出,因此这些模型确保每个序列元素的输出仅依赖于先前的序列元素,所以需要对Attention weights进行处理;

根据论文公式: A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V
可以发现 Q Q Q K K K是做矩阵运算的, A t t e n t i o n Attention Attention中的单个元素计算是 Q Q Q中的某行和 K K K中的某行做点积运算;论文中是计算 A t t e n t i o n Attention Attention后在相应掩码位置乘一个无穷小,这里其实可以优化一下,只计算 A t t e n t i o n Attention Attention有效的位置,可以加快速度;

这一层根据训练和推理有一点不同,如上文所说,在训练时,我们不需要每一次新产生的输出做为输入,我们直接用真值(shift)代替新产生的输出进行训练就好,这样可以在缺失一点稳定性的情况下,加快训练速度,并得到每一个位置上的损失大小;

在推理时,我们并没有真值,我们只能以每一次新产生的输出作为输入进行计算,这里有两种自回归的处理方式;一个是RNN,一个是CNN:Fast Wavenet;

以下是该层的简要表示,即每个序列元素的输出仅依赖于先前的序列元素;

构建Transformer模型

模型结构如下:

Embedding层

Embedding层分为两个部分:input_embeddingposition_embedding

首先是input_embedding,假设 “注意力机制是Transformer的核心” 这句话分词得到 [注意力机制, 是, Transformer, 的, 核心];用序号表示为[1,2,3,4,5],由于是分类变量,需要转化为独热编码再使用权重矩阵映射到某一维度,然而这里可以直接用tf.kears.layers.Embedding一步实现上述两步功能;其需要一个input_dim:表示分类个数,也就是序号的最大值;output_dim:表示隐藏层维度,也就是d_model

其次是position_embedding,论文中采用的是绝对位置编码的方式:

![[Pasted image 20240512143453.png]]

其需要两个参数,一个是pos,这是表示位置,也就是 输入序列的长度 范围内的值,第二个是i,这表示嵌入向量的位置,也就是d_model 隐藏维度范围内的值;实现代码如下:

def absolute_position_embedding(n_len, d_model):
    positions = tf.range(n_len, dtype=tf.float32)[:,tf.newaxis]
    depths = tf.range(d_model//2, dtype=tf.float32)[tf.newaxis, :]/(d_model//2)
    angle_rads = positions / (10000**depths)
    pos_embedding = tf.concat([tf.sin(angle_rads), tf.cos(angle_rads)], axis=-1)
    return pos_embedding

# position_input = absolute_position_embedding(n_len=2048, d_model=512)
# plt.pcolormesh(position_input.numpy().T, cmap='RdBu')
# plt.ylabel('Depth')
# plt.xlabel('Position')
# plt.colorbar()
# plt.show()

结合起来获得Embeding,使用 tf.keras.layers.Layer 类表达如下:

class Embedding(tf.keras.layers.Layer):
    def __init__(self, n_len, input_dim, d_model):
        super(Embedding, self).__init__()
        self.input_embedding = tf.keras.layers.Embedding(input_dim=input_dim, output_dim=d_model)
        self.position_embedding = self.absolute_position_embedding(n_len=n_len, d_model=d_model)
        
    def absolute_position_embedding(self, n_len, d_model):
        positions = tf.range(n_len, dtype=tf.float32)[:,tf.newaxis]
        depths = tf.range(d_model//2, dtype=tf.float32)[tf.newaxis, :]/(d_model//2)
        angle_rads = positions / (10000**depths)
        pos_embedding = tf.concat([tf.sin(angle_rads), tf.cos(angle_rads)], axis=-1)
        return pos_embedding

    def call(self, x):
        x = self.input_embedding(x)
        output = x + self.position_embedding
        return output
注意力机制的实现

由于要适应三种注意力机制,我们需要分离 maskqkv功能

class MultiHeadAttention(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads):
        super(Self_Attention_Mechanism, self).__init__()

        self.num_heads = num_heads
        self.wq = tf.keras.layers.Dense(d_model)
        self.wk = tf.keras.layers.Dense(d_model)
        self.wv = tf.keras.layers.Dense(d_model)

        self.wo = tf.keras.layers.Dense(d_model)

    def split_head(self, x):
        """(batch_size, heads, len, depth)"""
        output = tf.reshape(x, [x.shape[0], x.shape[1], self.num_heads, -1])
        output = tf.transpose(output, [0,2,1,3])
        return output

    def scaled_dot_product_attention(self, q, k, v, mask=False):
        dk = tf.cast(k.shape[-1], tf.float32)
        matmul_qk = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(dk)
        if mask:
            matmul_qk += -(1 - tf.linalg.band_part(tf.ones_like(matmul_qk), 0, -1)) * 1e9
    
        attention_weighs = tf.nn.softmax(matmul_qk, axis=-1)
        outputs = tf.matmul(attention_weighs, v)
        return attention_weighs, outputs
        
    def call(self, q, k, v, mask=False, return_attention_weights=False):
        q = self.split_head(self.wq(q))
        k = self.split_head(self.wk(k))
        v = self.split_head(self.wv(v))
        attention_weighs, output = self.scaled_dot_product_attention(q, k, v, mask=mask)
        output = tf.transpose(output, [0,2,1,3])
        output = tf.reshape(output, [output.shape[0], output.shape[1], -1])
        output = self.wo(output)
        if return_attention_weights:
            return attention_weighs, output
        else:
            return output
Encoder实现

由于 Encoder 有六个相同的子块 EncoderLayer,这里先实现一下 EncoderLayer

EncoderLayer 中 包含一个自注意力机制以及一个前反馈层,所以需要三个参数初始化:d_modelnum_headsdff

这里 dff 表示前反馈层中的投影维度;

class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff):
        super(EncoderLayer, self).__init__()
        self.mha = MultiHeadAttention(d_model, num_heads)
        self.fnn_in = tf.keras.layers.Dense(dff, activation='relu')
        self.fnn_out = tf.keras.layers.Dense(d_model)
        self.layernorm1 = tf.keras.layers.LayerNormalization()
        self.layernorm2 = tf.keras.layers.LayerNormalization()

    def call(self, x):
        x1 = self.mha(q=x, k=x, v=x)
        x1 = self.layernorm1(x + x1)
        x2 = self.fnn_in(x1)
        x2 = self.fnn_out(x2)
        output = self.layernorm2(x1 + x2)
        return output

Encoder 从本质来说就是 EncoderLayer 的累加:

class Encoder(tf.keras.layers.Layer):
    def __init__(self, num_encoder_layer, d_model, num_heads, dff):
        super(Encoder, self).__init__()
        self.encoder_layers = [EncoderLayer(d_model, num_heads, dff) for _ in range(num_encoder_layer)]

    def call(self, x):
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
        return x
Decoder实现

同样按照Encoder中一样实现,但是不同的是:首先多了一个 Mask MutliHead Attention,其次第二个MHA中 kv 是来自于Encoder

class Decoder_layer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff):
        super(Decoder_layer, self).__init__()
        self.mha1 = MultiHeadAttention(d_model, num_heads)
        self.mha2 = MultiHeadAttention(d_model, num_heads)

        self.fnn_in = tf.keras.layers.Dense(dff, activation='relu')
        self.fnn_out = tf.keras.layers.Dense(d_model)
        
        self.layernorm1 = tf.keras.layers.LayerNormalization()
        self.layernorm2 = tf.keras.layers.LayerNormalization()
        self.layernorm3 = tf.keras.layers.LayerNormalization()

    def call(self, x, enc_output):
        x1 = self.mha1(q=x, k=x, v=x, mask=True)
        x1 = self.layernorm1(x + x1)
        x2 = self.mha2(q=x1, k=enc_output, v=enc_output)
        x2 = self.layernorm2(x1 + x2)
        x3 = self.fnn_in(x2)
        x3 = self.fnn_out(x3)
        output = self.layernorm3(x2 + x3)
        return output

循环 DecoderLayer 得到 Decoder

class Decoder(tf.keras.layers.Layer):
    def __init__(self, num_decoder_layer, d_model, num_heads, dff):
        super(Decoder, self).__init__()
        self.decoder_layers = [Decoder_layer(d_model, num_heads, dff) for _ in range(num_decoder_layer)]

    def call(self, x, enc_output):
        for decoder_layer in self.decoder_layers:
            x = decoder_layer(x, enc_output)
        return x
Transformer实现

结合一下前面实现的东西,很轻松可以得到:

class Transformer(tf.keras.Model):
    def __init__(self, num_encoder_layer, num_decoder_layer, input_dim, n_len, d_model, num_heads, dff):
        super(Transformers, self).__init__()
        self.embedding_1 = Embedding(n_len, input_dim, d_model)
        self.embedding_2 = Embedding(n_len, input_dim, d_model)
        self.encoder = Encoder(num_encoder_layer, d_model, num_heads, dff)
        self.decoder = Decoder(num_decoder_layer, d_model, num_heads, dff)
        self.final_dense = tf.keras.layers.Dense(input_dim, activation='softmax')

    def call(self, x1, x2):
        x1 = self.embedding_1(x1)
        x2 = self.embedding_2(x2)
        x1 = self.encoder(x1)
        x2 = self.decoder(x2, x1)
        output = self.final_dense(x2)
        return output

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/618423.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

关于Speech processing Universal PERformance Benchmark (SUPERB)基准测试及衍生版本

Speech processing Universal PERformance Benchmark (SUPERB)是由台湾大学、麻省理工大学,卡耐基梅隆大学和 Meta 公司联合提出的评测数据集,其中包含了13项语音理解任务,旨在全面评估模型在语音处理领域的表现。这些…

贝叶斯分类器详解

1 概率论知识 1.1 先验概率 先验概率是基于背景常识或者历史数据的统计得出的预判概率,一般只包含一个变量,例如P(A),P(B)。 1.2 联合概率 联合概率指的是事件同时发生的概率,例如现在A,B两个事件同时发生的概率,记…

Hotcoin Research | 市场洞察:2024年5月6日-5月12日

加密货幣市场表现 加密货幣总市值为1.24万亿,BTC占比53.35%。 本周行情呈现先涨后跌的一种態势,5月6日-9日大盘持续下跌,周末为震荡行情。本周的比特幣现货ETF凈流入:1.1262亿美元,其中:美国ETF流入&…

Google与哈佛大学的科学家团队共同创造了一张人脑中一个极小部分的精细地图

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Linux重定向及缓冲区理解

重定向: 在上一期虚拟文件系统中讲到了每个进程在打开后,都会默认打开3个文件,如下: stdin 标准输入(键盘) 文件描述符:0 stdout 标准输出(显示器)文件描述符&a…

C++组合类

类的数据成员不但可以是基本类型,也可以是其它类的对象。 组合类就是指一个类包含其他类的对象作为该类的数据成员。 当组合类创建对象时,其中包含的各个数据成员对象应首先被创建。因此,在创建类的对象时,既要对本类的基本…

贪吃蛇(c实现)

目录 游戏说明: 第一个是又是封面,第二个为提示信息,第三个是游戏运行界面 游戏效果展示: 游戏代码展示: snack.c test.c snack.h 控制台程序的准备: 控制台程序名字修改: 参考&#xff1a…

DELL T630服务器iDRAC分辨率调整办法

对于Dell T630服务器的iDRAC分辨率调整,您需要登录到iDRAC的Web界面。以下是详细的步骤: 登录iDRAC:在浏览器中输入iDRAC的IP地址,然后使用用户名(通常是“root”)和密码登录。 导航到虚拟控制台&#xff…

(Java)心得:LeetCode——19.删除链表的倒数第 N 个节点

一、原题 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例 2: 输入:head [1], n 1 输出:[]示例 3&…

IEEE 802.11标准

在IEEE 802.11标准中使用了扩频通信技术,主要作用是使得抗干扰性更强。 IEEE 802.11在MAC层采用了CSMA/CA协议。 IEEE 802.1x是一种基于端口认证协议。

报表-接口类型的数据源

1、配置 在数据中进行如下配置 配置格式,换行的方式 #API $.data[0].children http://192.168.1.1:9200/apis/getInfo 行1:固定写法,标识这是一个接口类型的数据集 行2:JSONPath格式字符串,对接口的数据进行取值。…

【半个月我拿下了软考证】软件设计师高频考点--系统化教学-关系模式

👨‍💻 收录于专栏:软件设计师考点暴击 ⭐🅰️进入狂砍分⭐ ⭐软件设计师高频考点文档, ⭐软件设计师高频考点专栏 ⭐软件设计师高频考点⭐ 🎶(A) 考点1,关系模式 考点: 三个模式相…

kettle经验篇:MongoDB-delete插件问题

目录 项目场景 问题分析 解决方案 MongoDB Delete插件使用总结 项目场景 项目使用的ODS层数据库是MongoDB;在数据中心从DB层向ODS层同步数据过程中,发现有张ODS表在同步过程中,数据突然发生锐减,甚至于该ODS表数据清0。 同步…

Zabbix6.0容器化部署(Docker-Composed)

Zabbix 为每个 Zabbix 组件提供 Docker image 作为可移植和自给自足的容器,以加快部署和更新过程。 Zabbix 组件在 Ubuntu、Alpine Linux 和 CentOS 基础 image 上提供:Zabbix 组件支持 MySQL 和 PostgreSQL 数据库、Apache2 和 Nginx Web 服务器。 1. Zabbix 组件…

17 SPI FLASH读写

SPI 协议简介 SPI 即 Serial Periphera linterface 的缩写,顾名思义就是串行外围设备接口,主要用于与FLASH、实时时钟、AD 转换器等外设模块的通信,它是一种高速的全双工同步的通信总线。 SPI 设备分为主设备和从设备,SPI 通信必…

Pikachu 靶场 RCE 通关解析

前言 Pikachu靶场是一种常见的网络安全训练平台,用于模拟真实世界中的网络攻击和防御场景。它提供了一系列的实验室环境,供安全专业人士、学生和爱好者练习和测试他们的技能。 Pikachu靶场的目的是帮助用户了解和掌握网络攻击的原理和技术,…

mybatis-plus使用指南(1)

快速开始 首先 我们 在创建了一个基本的springboot的基础框架以后&#xff0c;在 pom文件中 引入 mybatisplus的相关依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5…

sumif的求和区域是文本格式怎么办?

sumif函数的求和区域是文本型数字&#xff0c;不更改源数据的情况下怎么求和呢&#xff1f; 一、不能使用SUMIF、SUMIFS函数 这两个函数的求和区域只能是引用&#xff0c;不能是公式运算的内存数组&#xff0c;因此不能用公式或运算符将求和区转换成数值。当引用来的数据是文本…

【C/C++】C/C++ 校园失物招领系统设计与实现(源码+报告)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

一套MySQL读写分离分库分表的架构,被秀到了!

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验&#xff0c; Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主&#xff0c;全网粉丝10万 擅长主流Oracle、My…