动态规划算法:⼦数组、⼦串系列(数组中连续的⼀段)

例题一

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以「某个位置为结尾」,结合「题⽬要求」,定义⼀个状态表⽰:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦数组」中和的最⼤和。
2. 状态转移⽅程:
dp[i] 的所有可能可以分为以下两种:
i. ⼦数组的⻓度为 1 :此时 dp[i] = nums[i]
ii. ⼦数组的⻓度⼤于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼤值再加上 nums[i] ,也就是 dp[i - 1] + nums[i]
由于我们要的是「最⼤值」,因此应该是两种情况下的最⼤值,因此可得转移⽅程:
dp[i] = max(nums[i], dp[i - 1] + nums[i])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = 0 即可。
4. 填表顺序:根据「状态转移⽅程」易得,填表顺序为「从左往右」。
5. 返回值:
状态表⽰为「以 i 为结尾的所有⼦数组」的最⼤值,但是最⼤⼦数组和的结尾我们是不确定的。
因此我们需要返回整个 dp 表中的最⼤值。

例题二

解法(动态规划): 算法思路:
本题与「最⼤⼦数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考
虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:
i. 结果在数组的内部,包括整个数组;
ii. 结果在数组⾸尾相连的⼀部分上。
其中,对于第⼀种情况,我们仅需按照「最⼤⼦数组和」的求法就可以得到结果,记为 fmax
对于第⼆种情况,我们可以分析⼀下:
i. 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
ii. 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最⼩的;
因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中
gmin 表⽰数组内的「最⼩⼦数组和」。 两种情况下的最⼤值,就是我们要的结果。
但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第
⼆种情况下的 gmin == sum ,求的得结果就会是 0 。若直接求两者的最⼤值,就会是 0 。但
是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。
由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最
⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。
1. 状态表⽰:
g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。
2. 状态转移⽅程:
g[i] 的所有可能可以分为以下两种:
i. ⼦数组的⻓度为 1 :此时 g[i] = nums[i]
ii. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。
由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:
g[i] = min(nums[i], g[i - 1] + nums[i])
3. 初始化:
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系。
在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。
4. 填表顺序:
根据状态转移⽅程易得,填表顺序为「从左往右」。
5. 返回值:
a. 先找到 f 表⾥⾯的最⼤值 -> fmax
b. 找到 g 表⾥⾯的最⼩值 -> gmin
c. 统计所有元素的和 -> sum
b. 返回 sum == gmin ? fmax : max(fmax, sum - gmin)

例题三

解法(动态规划):
算法思路:
这道题与「最⼤⼦数组和」⾮常相似,我们可以效仿着定义⼀下状态表⽰以及状态转移:
i. dp[i] 表⽰以 i 为结尾的所有⼦数组的最⼤乘积,
ii. dp[i] = max(nums[i], dp[i - 1] * nums[i]) ;
由于正负号的存在,我们很容易就可以得到,这样求 dp[i] 的值是不正确的。因为 dp[i - 1] 的信息并不能让我们得到 dp[i] 的正确值。⽐如数组 [-2, 5, -2] ,⽤上述状态转移得到的 dp数组为 [-2, 5, -2] ,最⼤乘积为 5 。但是实际上的最⼤乘积应该是所有数相乘,结果为 20
究其原因,就是因为我们在求 dp[2] 的时候,因为 nums[2] 是⼀个负数,因此我们需要的是「 i - 1 位置结尾的最⼩的乘积 ( -10 ) 」,这样⼀个负数乘以「最⼩值」,才会得到真实的最⼤值。
因此,我们不仅需要⼀个「乘积最⼤值的 dp 表」,还需要⼀个「乘积最⼩值的 dp 表」。
1. 状态表⽰:
f[i] 表⽰:以 i 结尾的所有⼦数组的最⼤乘积,
g[i] 表⽰:以 i 结尾的所有⼦数组的最⼩乘积。
2. 状态转移⽅程:
遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。对于 f[i] ,也就是「以 i 为结尾的所有⼦数组的最⼤乘积」,对于所有⼦数组,可以分为下⾯三种形式:
i. ⼦数组的⻓度为 1 ,也就是 nums[i]
ii. ⼦数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1]
iii. ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0
,三种情况其实都包含了)
综上所述, f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i - 1]) )。 对于 g[i] ,也就是「以 i 为结尾的所有⼦数组的最⼩乘积」,对于所有⼦数组,可以分为下⾯三种形式:
i. ⼦数组的⻓度为 1 ,也就是 nums[i]
ii. ⼦数组的⻓度⼤于1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1]
iii. ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1]
综上所述, g[i] = min(nums[i], min(nums[i] * f[i - 1], nums[i] * g[i -1])) 。
(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)
3. 初始化:
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系。
在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 1 即可。
4. 填表顺序:
根据状态转移⽅程易得,填表顺序为「从左往右,两个表⼀起填」。
5. 返回值:
返回 f 表中的最⼤值。

例题四

解法(动态规划):
算法思路:
继续效仿「最⼤⼦数组和」中的状态表⽰,尝试解决这个问题。
状态表⽰: dp[i] 表⽰「所有以 i 结尾的⼦数组,乘积为正数的最⻓⼦数组的⻓度」。
思考状态转移:对于 i 位置上的 nums[i] ,我们可以分三种情况讨论:
i. 如果 nums[i] = 0 ,那么所有以 i 为结尾的⼦数组的乘积都不可能是正数,此时 dp[i] = 0 ;
ii. 如果 nums[i] > 0 ,那么直接找到 dp[i - 1] 的值(这⾥请再读⼀遍 dp[i - 1] 代表的意义,并且考虑如果 dp[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可,此时 dp[i] = dp[i - 1] + 1
iii. 如果 nums[i] < 0 ,这时候你该蛋疼了,因为在现有的条件下,你根本没办法得到此时的最⻓⻓度。因为乘法是存在「负负得正」的,单单靠⼀个 dp[i - 1] ,我们⽆法推导出 dp[i] 的值。 但是,如果我们知道「以 i - 1 为结尾的所有⼦数组,乘积为负数的最⻓⼦数组的⻓度」 neg[i - 1] ,那么此时的 dp[i] 是不是就等于 neg[i - 1] + 1 呢?
通过上⾯的分析,我们可以得出,需要两个 dp 表,才能推导出最终的结果。不仅需要⼀个「乘积
为正数的最⻓⼦数组」,还需要⼀个「乘积为负数的最⻓⼦数组」。
1. 状态表⽰:
f[i] 表⽰:以 i 结尾的所有⼦数组中,乘积为「正数」的最⻓⼦数组的⻓度;
g[i] 表⽰:以 i 结尾的所有⼦数组中,乘积为「负数」的最⻓⼦数组的⻓度。
2. 状态转移⽅程:
遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。对于 f[i] ,也就是以 i 为结尾的乘积为「正数」的最⻓⼦数组,根据 nums[i] 的值,可以分为三种情况:
i. nums[i] = 0 时,所有以 i 为结尾的⼦数组的乘积都不可能是正数,此时 f[i] = 0 ;
ii. nums[i] > 0 时,那么直接找到 f[i - 1] 的值(这⾥请再读⼀遍 f[i - 1] 代表的意义,并且考虑如果 f[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可,此时 f[i] = f[i - 1] + 1
iii. nums[i] < 0 时,此时我们要看 g[i - 1] 的值(这⾥请再读⼀遍 g[i - 1] 代表的意义。因为负负得正,如果我们知道以 i - 1 为结尾的乘积为负数的最⻓⼦数组的⻓度,加上 1 即可),根据 g[i - 1] 的值,⼜要分两种情况:
1. g[i - 1] = 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是不存在的,⼜因为 nums[i] < 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组也是不存在的,此时 f[i] = 0
2. g[i - 1] != 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是存在的,⼜因为 nums[i] < 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组就等于 g[i - 1] + 1 ;
综上所述, nums[i] < 0 时, f[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1;
对于 g[i] ,也就是以 i 为结尾的乘积为「负数」的最⻓⼦数组,根据 nums[i] 的值,可以分为三种情况:
i. nums[i] = 0 时,所有以 i 为结尾的⼦数组的乘积都不可能是负数,此时 g[i] = 0 ;
ii. nums[i] < 0 时,那么直接找到 f[i - 1] 的值(这⾥请再读⼀遍 f[i - 1] 代表的意义,并且考虑如果 f[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可(因为正数 * 负数 = 负数),此时 g[i] = f[i - 1] + 1
iii. nums[i] > 0 时,此时我们要看 g[i - 1] 的值(这⾥请再读⼀遍 g[i - 1] 代表的意义。因为正数 * 负数 = 负数),根据 g[i - 1] 的值,⼜要分两种情况:
1. g[i - 1] = 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是不存在的,⼜因为 nums[i] > 0 ,所以以 i 结尾的乘积为负数的最⻓⼦数组也是不存在的,此时 f[i] = 0
2. g[i - 1] != 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是存在的,⼜因为 nums[i] > 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组就等于 g[i - 1] + 1 ;
综上所述, nums[i] > 0 时, g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1 ;
这⾥的推导⽐较绕,因为不断的出现「正数和负数」的分情况讨论,我们只需根据下⾯的规则,严
格找到此状态下需要的 dp 数组即可:
i. 正数 * 正数 = 正数
ii. 负数 * 负数 = 正数
iii. 负数 * 正数 = 正数 * 负数 = 负数
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 0 即可。
4. 填表顺序:
根据「状态转移⽅程」易得,填表顺序为「从左往右,两个表⼀起填」。
5. 返回值:
根据「状态表⽰」,我们要返回 f 表中的最⼤值。
解法(动态规划):
算法思路:
1. 状态表⽰:
由于我们的研究对象是「⼀段连续的区间」,如果我们状态表⽰定义成 [0, i] 区间内⼀共有多少等差数列,那么我们在分析 dp[i] 的状态转移时,会⽆从下⼿,因为我们不清楚前⾯那么多的「等差数列都在什么位置」。所以说,我们定义的状态表⽰必须让等差数列「有迹可循」,让状态转移的时候能找到「⼤部队」。因此,我们可以「固定死等差数列的结尾」,定义下⾯的状态表⽰:dp[i] 表⽰必须「以 i 位置的元素为结尾」的等差数列有多少种。
2. 状态转移⽅程:
我们需要了解⼀下等差数列的性质:如果 a b c 三个数成等差数列,这时候来了⼀个 d ,其中 b c d 也能构成⼀个等差数列,那么 a b c d 四个数能够成等差序列吗?答案是:显然的。因为他们之间相邻两个元素之间的差值都是⼀样的。有了这个理解,我们就可以转⽽分析我们的状态转移⽅程了。 对于dp[i] 位置的元素 nums[i] ,会与前⾯的两个元素有下⾯两种情况:
i. nums[i - 2], nums[i - 1], nums[i] 三个元素不能构成等差数列:那么以nums[i] 为结尾的等差数列就不存在,此时 dp[i] = 0
ii. nums[i - 2], nums[i - 1], nums[i] 三个元素可以构成等差数列:那么以nums[i - 1] 为结尾的所有等差数列后⾯填上⼀个 nums[i] 也是⼀个等差数列,此时dp[i] = dp[i - 1] 。但是,因为 nums[i - 2], nums[i - 1], nums[i] 三者⼜能构成⼀个新的等差数列,因此要在之前的基础上再添上⼀个等差数列,于是 dp[i] = dp[i - 1] + 1 。综上所述:状态转移⽅程为:
当: nums[i - 2] + nums[i] != 2 * nums[i - 1] 时,dp[i] = 0
当: nums[i - 2] + nums[i] == 2 * nums[i - 1] 时, dp[i] = 1 + dp[i - 1]
3. 初始化:
由于需要⽤到前两个位置的元素,但是前两个位置的元素⼜⽆法构成等差数列,因此 dp[0] = dp[1] = 0 。
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
因为我们要的是所有的等差数列的个数,因此需要返回整个 dp 表⾥⾯的元素之和。

例题五

解法(动态规划):
算法思路:
1. 状态表⽰:
我们先尝试定义状态表⽰为: dp[i] 表⽰「以 i 位置为结尾的最⻓湍流数组的⻓度」。 但是,问题来了,如果状态表⽰这样定义的话,以 i 位置为结尾的最⻓湍流数组的⻓度我们没法从之前的状态推导出来。因为我们不知道前⼀个最⻓湍流数组的结尾处是递增的,还是递减的。因此,我们需要状态表⽰能表⽰多⼀点的信息:要能让我们知道这⼀个最⻓湍流数组的结尾是「递增」的还是「递减」的。因此需要两个 dp 表:
f[i] 表⽰:以 i 位置元素为结尾的所有⼦数组中,最后呈现「上升状态」下的最⻓湍流数组的⻓度;
g[i] 表⽰:以 i 位置元素为结尾的所有⼦数组中,最后呈现「下降状态」下的最⻓湍流数组的⻓度。
2. 状态转移⽅程:
对于 i 位置的元素 arr[i] ,有下⾯两种情况:
i. arr[i] > arr[i - 1] :如果 i 位置的元素⽐ i - 1 位置的元素⼤,说明接下来应该去找 i -1 位置结尾,并且 i - 1 位置元素⽐前⼀个元素⼩的序列,那就是 g[i - 1] 。更新 f[i] 位置的值: f[i] = g[i - 1] + 1
ii. arr[i] < arr[i - 1] :如果 i 位置的元素⽐ i - 1 位置的元素⼩,说明接下来应该去找 i - 1 位置结尾,并且 i - 1 位置元素⽐前⼀个元素⼤的序列,那就是f[i - 1] 。更新 g[i] 位置的值: g[i] = f[i - 1] + 1
iii. arr[i] == arr[i - 1] :不构成湍流数组。
3. 初始化:
所有的元素「单独」都能构成⼀个湍流数组,因此可以将 dp 表内所有元素初始化为 1 。由于⽤到前⾯的状态,因此我们循环的时候从第⼆个位置开始即可。
4. 填表顺序:
毫⽆疑问是「从左往右,两个表⼀起填」。
5. 返回值:
应该返回「两个 dp 表⾥⾯的最⼤值」,我们可以在填表的时候,顺便更新⼀个最⼤值。

例题六

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:
dp[i] 表⽰: [0, i] 区间内的字符串,能否被字典中的单词拼接⽽成。
2. 状态转移⽅程:
对于dp[i] ,为了确定当前的字符串能否由字典⾥⾯的单词构成,根据最后⼀个单词的起始位置 j ,我们可以将其分解为前后两部分:
i. 前⾯⼀部分[0, j - 1] 区间的字符串;
ii. 后⾯⼀部分[j, i] 区间的字符串。
其中前⾯部分我们可以在 dp[j - 1] 中找到答案,后⾯部分的⼦串可以在字典⾥⾯找到。因此,我们得出⼀个结论:当我们在从0 ~ i 枚举 j 的时候,只要 dp[j - 1] = true并且后⾯部分的⼦串 s.substr(j, i - j + 1) 能够在字典中找到,那么 dp[i] = true 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = true ,可以理解为空串能够拼接⽽成。其中为了⽅便处理下标的映射关系,我们可以将字符串前⾯加上⼀个占位符 s = ' ' + s ,这样就没有下标的映射关系的问题了,同时还能处理「空串」的情况。
4. 填表顺序:
显⽽易⻅,填表顺序「从左往右」。
5. 返回值:
由「状态表⽰」可得:返回 dp[n] 位置的布尔值。
哈希表优化的⼩细节:
在状态转移中,我们需要判断后⾯部分的⼦串「是否在字典」之中,因此会「频繁的⽤到查询操
作」。为了节省效率,我们可以提前把「字典中的单词」存⼊到「哈希表」中。

例题七

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:dp[i] 表⽰:以 i 位置的元素为结尾的所有⼦串⾥⾯,有多少个在 base 中出现过。
2. 状态转移⽅程: 对于dp[i] ,我们可以根据⼦串的「⻓度」划分为两类:
i. ⼦串的⻓度等于 1 :此时这⼀个字符会出现在 base 中;
ii. ⼦串的⻓度⼤于 1 :如果 i 位置的字符和 i - 1 位置上的字符组合后,出现在 base中的话,那么 dp[i - 1] ⾥⾯的所有⼦串后⾯填上⼀个 s[i] 依旧在 base 中出现。因此 dp[i] = dp[i - 1]
综上, dp[i] = 1 + dp[i - 1] ,其中 dp[i - 1] 是否加上需要先做⼀下判断。
3. 初始化:
可以根据「实际情况」,将表⾥⾯的值都初始化为 1
4. 填表顺序:
显⽽易⻅,填表顺序「从左往右」。
5. 返回值:
这⾥不能直接返回 dp 表⾥⾯的和,因为会有重复的结果。在返回之前,我们需要先「去重」:
i. 相同字符结尾的 dp 值,我们仅需保留「最⼤」的即可,其余 dp 值对应的⼦串都可以在最⼤的⾥⾯找到;
ii. 可以创建⼀个⼤⼩为 26 的数组,统计所有字符结尾的最⼤ dp 值。最后返回「数组中所有元素的和」即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/616880.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c++ map,set封装

map 是一个 kv 结构&#xff0c; set 是 k结构。 我们前面模拟实现了 红黑树&#xff0c;但是我们实现的红黑树把 kv 结构写死了&#xff0c;怎么样才能用泛型编程的思想来实现map和set呢 我们先简单看一下原码中是怎么实现的 1.原码实现逻辑 我们打开这里的 stl_set.h 通过…

Win10子系统wsl开机自启动jar包(nginx、redis、apache2、ssh等)

一. 需求背景 最近在研究nextcloud项目&#xff0c;选择了Win10子系统方案&#xff0c;而win10子系统wsl是通过接口实现的&#xff0c;很多linux上的常规操作在wsl上无法实现&#xff0c;比如配置开机自启动jar包以及其他依赖程序。只能通过windows系统重启时&#xff0c;自动执…

数据可视化训练第四天(模拟投掷筛子并且统计频次)

投掷一个筛子 import matplotlib.pyplot as plt from random import randint import numpy as npclass Die:"""模拟投掷筛子"""def __init__(self,num_sides6):self.num_sidesnum_sidesdef roll(self):return randint(1,self.num_sides)num1000…

day05-面向对象内存原理和数组

day05 面向对象内存原理和数组 我们在之前已经学习过创建对象了,那么在底层中他是如何运行的。 1.对象内存图 1.1 Java 内存分配 Java 程序在运行时&#xff0c;需要在内存中分配空间。为了提高运算效率&#xff0c;就对空间进行了不同区域的划分&#xff0c;因为每一片区域…

蓝桥杯-地宫取宝

X 国王有一个地宫宝库&#xff0c;是 nm 个格子的矩阵&#xff0c;每个格子放一件宝贝&#xff0c;每个宝贝贴着价值标签。 地宫的入口在左上角&#xff0c;出口在右下角。 小明被带到地宫的入口&#xff0c;国王要求他只能向右或向下行走。 走过某个格子时&#xff0c;如果那个…

睿尔曼机械臂ROS控制

下载git工程 git clone https://github.com/RealManRobot/rm_robot.git安装配置 catkin build rm_msgs source devel/setup.bash catkin build source setup.bash这里注意&#xff0c;如果采用setup.sh多半不会成功&#xff0c;必须要source setup.bash文件&#xff0c;ros才…

数据分析思维——数据埋点笔记,以电商为例

数据埋点 数据分析前提是有数据&#xff0c;数据从哪里来&#xff0c;要选择采集哪些数据都需要考虑。如某些app上的商品推荐&#xff0c;是基于哪些信息来预判的呢&#xff1f;因此作为数据分析师有必要系统的了解用户行为到用户数据的整个过程 何为数据埋点 每当用户在客户端…

JeeSite V5.7.0 发布,Java快速开发平台,Vite5、多项重构重磅升级

JeeSite V5.7.0 发布&#xff0c;Java快速开发平台&#xff0c;Vite5、多项重构重磅升级 升级内容 新增 参数配置 IP 地址黑白名单过滤器动态参数 新增 侧边栏是否展开第一个菜单的开关 first-open 新增 AesTypeHandler 处理字段数据加密解密或脱敏 新增 JsonTypeHandler …

FANUC机器人坐标系的分类和简介

1、概述 坐标系是为了确定机器人的位置和姿势而在机器人或空间上定义的位置指标系统&#xff0c;坐标系分为关节坐标系和直角坐标系&#xff0c;直角坐标系遵循右手定则&#xff0c;而关节坐标系则是以机器人每个轴所转动的角度来表示机器人当前的位置。 2、坐标系的分类及简…

2024 年最新本地、云服务器安装部署 miniconda 环境详细教程(更新中)

Anaconda 概述 Anaconda 是专门为了方便使用 Python 进行数据科学研究而建立的一组软件包&#xff0c;涵盖了数据科学领域常见的 Python 库&#xff0c;并且自带了专门用来解决软件环境依赖问题的 conda 包管理系统。主要是提供了包管理与环境管理的功能&#xff0c;可以很方便…

嵌入式全栈开发学习笔记---C语言笔试复习大全15

目录 指针运算 笔试题17 思考&#xff1a;*px、*px和(*px)的区别&#xff01; 笔试题18 补充命令8&#xff1a;“cd ..”退回到上一级目录 补充命令9&#xff1a;“man 3 函数名”可以查看库函数的原型 const 修饰指针是什么意思&#xff1f;&#xff08;笔试重点&#…

用hMailServer+roundcubemail+宝塔安装配置一个自己的邮箱服务

用hMailServerroundcubemail安装配置一个自己的邮箱服务 1、准备工具与资料&#xff1a; 云服务器一台 基础配置就行 2核4G。域名一个 以下用lizipro.cn示例。hMailServer安装包roundcubemail安装包异常处理插件补丁&#xff1a; libmysql.zip 2、hMailServer服务安装&#…

QToolButton的特殊使用

QToolButton的特殊使用 介绍通过QSS取消点击时的凹陷效果点击时的凹陷效果通过QSS取消点击时的凹陷效果 介绍 该篇文章记录QToolButton使用过程中的特殊用法。 通过QSS取消点击时的凹陷效果 点击时的凹陷效果 通过QSS取消点击时的凹陷效果 #include <QToolButton> #i…

加密与CA证书

文章目录 加密与CA证书http协议是不安全的使用对称秘钥进行数据加密非对称秘钥加密CA证书应用补充 加密与CA证书 CA 证书是什么&#xff0c;证书的目的是什么 首先明确一点&#xff0c;CA证书是数字时代中确保身份和数据安全的重要工具&#xff0c;为用户提供了安心、便捷和可…

齿轮端面倒棱刀具设计及模拟,记录一下

最近&#xff0c;我深陷在一项复杂且繁琐的任务中&#xff0c;几乎快要被其折磨得近乎疯狂。然而&#xff0c;经过一番努力&#xff0c;我终于迎来了曙光&#xff0c;成功完成了齿轮端面倒棱刀具加工的计算模拟。 这项任务&#xff0c;犹如一场旷日持久的战斗&#xff0c;每一…

小程序获取手机号,用户昵称,头像

一、手机号 在微信小程序中&#xff0c;获取用户手机号也需要用户的明确授权。你可以使用 button 组件的 open-type 属性设置为 getPhoneNumber 来实现这个功能。当用户点击这个按钮时&#xff0c;会弹出一个对话框请求用户的授权。如果用户同意&#xff0c;你可以在 bindgetp…

03.Linux文件操作

1.操作系统与Linux io框架 1.1 io与操作系统 1.1.1 io概念 io 描述的是硬件设备之间的数据交互&#xff0c;分为输⼊ (input) 与输出 (output)。 输⼊&#xff1a;应⽤程序从其他设备获取数据 (read) 暂存到内存设备中&#xff1b;输出&#xff1a;应⽤程序将内存暂存的数据…

数据链路层(详细版)【02】

接 数据链路层&#xff08;详细版&#xff09;【01】 文章目录 四、以太网MAC层&#xff08;一&#xff09;MAC地址组成&#xff08;1&#xff09;48位MAC地址格式&#xff08;2&#xff09;单播地址 & 多播地址 & 广播地址&#xff08;3&#xff09;全球管理 & 本…