技术爱好者必看:如何用AI问答API彻底改变用户体验!

AI 问答 API 对接说明

我们知道,市面上一些问答 API 的对接还是相对没那么容易的,比如说 OpenAI 的 Chat Completions API,它有一个 messages 字段,如果要完成连续对话,需要我们把所有的上下文历史全部传递,同时还需要处理 Token 超出限制的问题。

AceDataCloud 提供的 AI 问答 API 针对上述情况进行了优化,在保证问答效果不变的情况下,对连续对话的实现进行了封装,对接时无需再关心 messages 的传递,也无需关心 Token 超出限制的问题(API 内部自动进行了处理),同时也提供了对话查询、修改等功能,使得整体的对接大大简化。

本文档会介绍下 AI 问答 API 的对接说明。

申请流程

要使用 API,需要先到 AI 问答 API 对应页面申请对应的服务,进入页面之后,点击「Acquire」按钮,如图所示:

如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

在首次申请时会有免费额度赠送,可以免费使用该 API。

基本使用

首先先了解下基本的使用方式,就是输入问题,获得回答,只需要简单地传递一个 question 字段,并指定相应模型即可。

比如说询问:“What’s your name?”,我们接下来就可以在界面上填写对应的内容,如图所示:

可以看到这里我们设置了 Request Headers,包括:

  • accept:想要接收怎样格式的响应结果,这里填写为 application/json,即 JSON 格式。
  • authorization:调用 API 的密钥,申请之后可以直接下拉选择。

另外设置了 Request Body,包括:

  • model:模型的选择,比如主流的 GPT 3.5,GPT 4 等。
  • question:需要询问的问题,可以是任意的纯文本。

选择之后,可以发现右侧也生成了对应代码,如图所示:

点击「Try」按钮即可进行测试,如上图所示,这里我们就得到了如下结果:

{
  "answer": "I am an AI language model developed by OpenAI and I don't have a personal name. However, you can call me GPT or simply Chatbot. How can I assist you today?"
}

可以看到,这里返回的结果中有一个 answer 字段,就是该问题的回答。我们可以输入任意问题,就可以得到任意的回答。

如果你不需要任何多轮对话的支持,这个 API 可以极大方便你的对接。

另外如果想生成对应的对接代码,可以直接复制生成,例如 CURL 的代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "question": "What's your name?"
}'

Python 的对接代码如下:

import requests

url = "https://api.acedata.cloud/aichat/conversations"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-3.5",
    "question": "What's your name?"
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

多轮对话

如果您想要对接多轮对话功能,需要传递一个额外参数 stateful,其值为 true,后续的每次请求都要携带该参数。传递了 stateful 参数之后,API 会额外返回一个 id 参数,代表当前对话的 ID,后续我们只需要将该 ID 作为参数传递,就可以轻松实现多轮对话。

下面我们来演示下具体的操作。

第一次请求,将 stateful 参数设置为 true,并正常传递 modelquestion 参数,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "question": "What's your name?",
  "stateful": true
}'

可以得到如下回答:

{
  "answer": "I am an AI language model created by OpenAI and I don't have a personal name. You can simply call me OpenAI or ChatGPT. How can I assist you today?",
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"
}

第二次请求,将第一次请求返回的 id 字段作为参数传递,同时 stateful 参数依然设置为 true,询问「What I asked you just now?」,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "stateful": true,
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916",
  "question": "What I asked you just now?"
}'

结果如下:

{
  "answer": "You asked me what my name is. As an AI language model, I do not possess a personal identity, so I don't have a specific name. However, you can refer to me as OpenAI or ChatGPT, the names used for this AI model. Is there anything else I can help you with?",
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"
}

可以看到,就可以根据上下文回答对应的问题了。

流式响应

该接口也支持流式响应,这对网页对接十分有用,可以让网页实现逐字显示效果。

如果想流式返回响应,可以更改请求头里面的 accept 参数,修改为 application/x-ndjson

修改如图所示,不过调用代码需要有对应的更改才能支持流式响应。

accept 修改为 application/x-ndjson 之后,API 将逐行返回对应的 JSON 数据,在代码层面我们需要做相应的修改来获得逐行的结果。

Python 样例调用代码:

import requests

url = "https://api.acedata.cloud/aichat/conversations"

headers = {
    "accept": "application/x-ndjson",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-3.5",
    "stateful": True,
    "id": "7cdb293b-2267-4979-a1ec-48d9ad149916",
    "question": "Hello"
}

response = requests.post(url, json=payload, headers=headers, stream=True)
for line in response.iter_lines():
    print(line.decode())

输出效果如下:

{"answer": "Hello", "delta_answer": "Hello", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello!", "delta_answer": "!", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How", "delta_answer": " How", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can", "delta_answer": " can", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I", "delta_answer": " I", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist", "delta_answer": " assist", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you", "delta_answer": " you", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you today", "delta_answer": " today", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you today?", "delta_answer": "?", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}

可以看到,响应里面的 answer 即为最新的回答内容,delta_answer 则是新增的回答内容,您可以根据结果来对接到您的系统中。

JavaScript 也是支持的,比如 Node.js 的流式调用代码如下:

const axios = require("axios");

const url = "https://api.acedata.cloud/aichat/conversations";
const headers = {
  "Content-Type": "application/json",
  Accept: "application/x-ndjson",
  Authorization: "Bearer {token}",
};
const body = {
  question: "Hello",
  model: "gpt-3.5",
  stateful: true,
};

axios
  .post(url, body, { headers: headers, responseType: "stream" })
  .then((response) => {
    console.log(response.status);
    response.data.on("data", (chunk) => {
      console.log(chunk.toString());
    });
  })
  .catch((error) => {
    console.error(error);
  });

Java 样例代码:

String url = "https://api.acedata.cloud/aichat/conversations";
OkHttpClient client = new OkHttpClient();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\"question\": \"Hello\", \"stateful\": true, \"model\": \"gpt-3.5\"}");
Request request = new Request.Builder()
        .url(url)
        .post(body)
        .addHeader("Content-Type", "application/json")
        .addHeader("Accept", "application/x-ndjson")
        .addHeader("Authorization", "Bearer {token}")
        .build();

client.newCall(request).enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
        e.printStackTrace();
    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {
        if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);
        try (BufferedReader br = new BufferedReader(
                new InputStreamReader(response.body().byteStream(), "UTF-8"))) {
            String responseLine;
            while ((responseLine = br.readLine()) != null) {
                System.out.println(responseLine);
            }
        }
    }
});

其他语言可以另外自行改写,原理都是一样的。

模型预设

我们知道,OpenAI 相关的 API 有对应的 system_prompt 的概念,就是给整个模型设置一个预设,比如它叫什么名字等等。本 AI 问答 API 也暴露了这个参数,叫做 preset,利用它我们可以给模型增加预设,我们用一个例子来体验下:

这里我们额外添加 preset 字段,内容为 You are a professional artist,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "stateful": true,
  "question": "What can you help me?",
  "preset": "You are a professional artist"
}'

运行结果如下:

{
    "answer": "As a professional artist, I can offer a range of services and assistance depending on your specific needs. Here are a few ways I can help you:\n\n1. Custom Artwork: If you have a specific vision or idea, I can create custom artwork for you. This can include paintings, drawings, digital art, or any other medium you prefer.\n\n2. Commissioned Pieces: If you have a specific subject or concept in mind, I can create commissioned art pieces tailored to your preferences. This could be for personal enjoyment or as a unique gift for someone special.\n\n3. Art Consultation: If you need guidance on art selection, interior design, or how to showcase and display art in your space, I can provide professional advice to help enhance your aesthetic sense and create a cohesive look."
}

可以看到这里我们告诉 GPT 他是一个机器人,然后问它可以为我们做什么,他就可以扮演一个机器人的角色来回答问题了。

图片识别

本 AI 也能支持添加附件进行图片识别,通过 references 传递对应图片链接即可,比如我这里有一张苹果的图片,如图所示:

该图片的链接是 https://cdn.acedata.cloud/ht05g0.png,我们直接将其作为 references 参数传递即可,同时需要注意的是,模型必须要选择支持视觉识别的模型,目前支持的是 gpt-4-vision,所以输入如下:

对应的代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-4-vision",
  "question": "How many apples in the picture?",
  "references": ["https://cdn.acedata.cloud/ht05g0.png"]
}'

运行结果如下:

{
  "answer": "There are 5 apples in the picture."
}

可以看到,我们就成功得到了对应图片的回答结果。

联网问答

本 API 还支持联网模型,包括 GPT-3.5、GPT-4 均能支持,在 API 背后有一个自动搜索互联网并总结的过程,我们可以选择模型为 gpt-3.5-browsing 来体验下,如图所示:

代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5-browsing",
  "question": "What's the weather of New York today?"
}'

运行结果如下:

{
  "answer": "The weather in New York today is as follows:\n- Current Temperature: 16°C (60°F)\n- High: 16°C (60°F)\n- Low: 10°C (50°F)\n- Humidity: 47%\n- UV Index: 6 of 11\n- Sunrise: 5:42 am\n- Sunset: 8:02 pm\n\nIt's overcast with a chance of occasional showers overnight, and the chance of rain is 50%.\nFor more details, you can visit [The Weather Channel](https://weather.com/weather/tenday/l/96f2f84af9a5f5d452eb0574d4e4d8a840c71b05e22264ebdc0056433a642c84).\n\nIs there anything else you'd like to know?"
}

可以看到,这里它自动联网搜索了 The Weather Channel 网站,并获得了里面的信息,然后进一步返回了实时结果。

如果对模型回答质量有更高要求,可以将模型更换为 gpt-4-browsing,回答效果会更好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/616048.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RustGUI学习(iced)之小部件(十二):如何使用rule分割线部件来分割UI?

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 概述 这是本专栏的第十二篇,主要讲述rule分割线部件的使用,会结合…

10分钟了解Golang泛型

泛型是Golang在1.18版本引入的强大工具,能够帮助我们在合适的场合实现简洁、可读、可维护的代码。原文: Go Generics: Everything You Need To Know 导言 可能有人会觉得Go泛型很难,因此想要借鉴其他语言(比如Java、NodeJS)的泛型…

LangChain:大模型框架的深度解析与应用探索

在数字化的时代浪潮中,人工智能技术正以前所未有的速度蓬勃发展,而大模型作为其中的翘楚,以生成式对话技术逐渐成为推动行业乃至整个社会进步的核心力量。再往近一点来说,在公司,不少产品都戴上了人工智能的帽子&#…

什么是读写分离?

读写分离将读操作和写操作分别分配给不同的数据库实例,以提高系统的吞吐量和性能。 一般情况下,我们都会选择一主多从,也就是一台主数据库负责写,其他的从数据库负责读。主库和从库之间会进行数据同步,以保证从库中数据…

用大于meilisearch-java-0.7.0.jar的报错的解决

Elasticsearch 做为老牌搜索引擎,功能基本满足,但复杂,重量级,适合大数据量。 MeiliSearch 设计目标针对数据在 500GB 左右的搜索需求,极快,单文件,超轻量。 所以,对于中小型项目来说…

面试经典算法系列之数组/字符串3 -- 移除元素

面试经典算法题35-移除元素 LeetCode.27 公众号:阿Q技术站 问题描述 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 O(1) 额外空…

手把手微调大模型【附:一镜到底视频教程】

前言 近期有很多小伙伴来问是否有大模型微调教程,其实目前网上有很多教程,但是据了解,由于网上教程质量参差不齐,导致很多小伙伴尤其是初学者,一坑未出又入一坑,有种从入门到放弃的感觉。于是乎&#xff0…

信息检索(36):ConTextual Masked Auto-Encoder for Dense Passage Retrieval

ConTextual Masked Auto-Encoder for Dense Passage Retrieval 标题摘要1 引言2 相关工作3 方法3.1 初步:屏蔽自动编码3.2 CoT-MAE:上下文屏蔽自动编码器3.3 密集通道检索的微调 4 实验4.1 预训练4.2 微调4.3 主要结果 5 分析5.1 与蒸馏检索器的比较5.2 …

【0003day】VOSviewer分析

这个软件也可以用知网,也可以用web of science。 首先,需要创建数据。这个数据如何创建,需要参考对应的教程。(本文以web of science为平台来做分析。) 首先,创建对应的数据库。 一直下一步 让后选择完…

哈希表(unordered_set、unordered_map)

文章目录 一、unordered_set、unordered_map的介绍二、哈希表的建立方法2.1闭散列2.2开散列(哈希桶/拉链法) 三、闭散列代码(除留余数法)四、开散列代码(拉链法/哈希桶) 一、unordered_set、unordered_map的…

【GO】go语言中的HTTP标准库 - http编程

上一节已经学习了HTTP的基础知识,本章将学习关于go语言的HTTP编程,最重要的是掌握 net/http 包的用法,以及如何自己编写一个简单的Web服务端,通过客户端访问Server端等。 编写简单的Web 服务器 http.ListenAndServe 启动 Http S…

maven deploy项目发布到中央仓库签名失败signing failed: No secret key

maven deploy项目发布到中央仓库签名失败signing failed: No secret key 执行操作 在我执行命令打包项目到中央仓库时失败 mvn clean deploy错误信息 [INFO] --- gpg:3.1.0:sign (sign-artifacts) LocalCache --- [INFO] Signing 4 files with 9961AA14xxxxxxxxxxxxxxD064…

JVM 类加载机制

JVM 类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程。 加载 加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的 java.lang.class 对…

【Unity 鼠标输入检测】

Unity 鼠标输入检测 Unity提供了多种方法来检测和处理鼠标输入,允许开发者在游戏中实现对鼠标移动、点击和滚轮滚动的响应。以下是一些基本的鼠标输入检测方法: 1. Input.mousePosition 这个属性返回当前鼠标指针的屏幕坐标。坐标是以像素为单位的&…

信息系统项目管理师0102:可行性研究的内容(7项目立项管理—7.2项目可行性研究—7.2.1可行性研究的内容)

点击查看专栏目录 文章目录 7.2项目可行性研究7.2.1可行性研究的内容1.技术可行性分析2.经济可行性分析3.社会效益可行性分析4.运行环境可行性分析5.其他方面的可行性分析记忆要点总结7.2项目可行性研究 可行性研究是在项目建议书被批准后,从技术、经济、社会和人员等方面的条…

【OceanBase诊断调优】—— 租户资源统计项及其查询方法

本文主要介绍 OceanBase 数据库中租户资源统计项及其查询方法。 适用版本 OceanBase 数据库 V4.1.x、V4.2.x 版本。 CPU 资源统计项 逻辑 CPU 使用率(线程处理请求的时间占比)。 通过虚拟表 __all_virtual_sysstat 在 SYS 系统租户下,查看…

【免费Java系列】大家好 ,今天是学习面向对象高级的第十二天点赞收藏关注,持续更新作品 !

这是java进阶课面向对象第一天的课程可以坐传送去学习http://t.csdnimg.cn/Lq3io day10-多线程 一、多线程常用方法 下面我们演示一下getName()、setName(String name)、currentThread()、sleep(long time)这些方法的使用效果。 public class MyThread extends Thread{publi…

AI办公自动化-用kimi批量重命名Word文档

文件夹里面有很多个word文档,标题里面都含有零代码编程,现在想将其替换为AI办公自动化。 在kimichat中输入提示词: 你是一个Python编程专家,要完成一个编写Python脚本的任务,具体步骤如下: 打开文件夹&am…

Kafka和Spark Streaming的组合使用学习笔记(Spark 3.5.1)

一、安装Kafka 1.执行以下命令完成Kafka的安装: cd ~ //默认压缩包放在根目录 sudo tar -zxf kafka_2.12-2.6.0.tgz -C /usr/local cd /usr/local sudo mv kafka_2.12-2.6.0 kafka-2.6.0 sudo chown -R qiangzi ./kafka-2.6.0 二、启动Kafaka 1.首先需要启动K…

Github上 5 个好玩儿的开源项目

1. 在你的 Windows 养小猫 2. 把你的图片生成 ASCII 3. 中国制霸生成器 4. 像素风格代码字体 5. 梦回 QQ 空间 01 在你的 Windows 养小猫 在MacBook的触摸板上,你可以抚养一只小宠物,并与它互动、喂食,这样非常有趣。 我向你推荐了一个…