day3_prefixSum

一、前缀和技巧

重点

前缀和技巧适用于快速、频繁地计算一个索引区间内的元素之和

个人理解;预计算,空间换时间

1.(一维数组的前缀和)303区域和检索-数组不可变

获取闭区间值 [left,right] -> preSum[right + 1] - preSum[left],其中preSum[right+1]表示累加到right时的总和

class NumArray {
    // 前缀和数组
    private int[] preSum;

    /* 输入一个数组,构造前缀和 */
    public NumArray(int[] nums) {
        // preSum[0] = 0,便于计算累加和
        preSum = new int[nums.length + 1];
        // 计算 nums 的累加和
        for (int i = 1; i < preSum.length; i++) {
            preSum[i] = preSum[i - 1] + nums[i - 1];
        }
    }
    
    /* 查询闭区间 [left, right] 的累加和 */
    public int sumRange(int left, int right) {
        return preSum[right + 1] - preSum[left];
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * int param_1 = obj.sumRange(left,right);
 */
2.(二维数组的前缀和)

同样的预计算

class NumMatrix {
// 定义:preSum[i][j] 记录 matrix 中子矩阵 [0, 0, i-1, j-1] 的元素和
    private int[][] preSum;
    
    public NumMatrix(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        if (m == 0 || n == 0) return;
        // 构造前缀和矩阵
        preSum = new int[m + 1][n + 1];
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 计算每个矩阵 [0, 0, i, j] 的元素和
                preSum[i][j] = preSum[i-1][j] + preSum[i][j-1] + matrix[i - 1][j - 1] - preSum[i-1][j-1];
            }
        }
    }
    
    // 计算子矩阵 [x1, y1, x2, y2] 的元素和
    public int sumRegion(int x1, int y1, int x2, int y2) {
 // 目标矩阵之和由四个相邻矩阵运算获得
        return preSum[x2+1][y2+1] - preSum[x1][y2+1] - preSum[x2+1][y1] + preSum[x1][y1];
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * int param_1 = obj.sumRegion(row1,col1,row2,col2);
 */

在这里插入图片描述

  1. 任何一个小矩阵可以由上图的矩阵计算得到
  2. 而下面这四个矩阵对应的是小矩阵的四个顶点(根据参数可推)
  3. 所以预计算每个以(0,0),(x,y)结尾的矩阵的值,经过计算即可得到

二、二叉树(纲领篇)

参考链接东哥带你刷二叉树(纲领篇) | labuladong 的算法笔记

先在开头总结一下,二叉树解题的思维模式分两类:

1、是否可以通过遍历一遍二叉树得到答案?

如果可以,用一个 traverse 函数配合外部变量来实现,这叫「遍历」的思维模式。

2、是否可以定义一个递归函数,通过子问题(子树)的答案推导出原问题的答案?

如果可以,写出这个递归函数的定义,并充分利用这个函数的返回值,这叫「分解问题」的思维模式。

无论使用哪种思维模式,你都需要思考:

如果单独抽出一个二叉树节点,它需要做什么事情?需要在什么时候(前/中/后序位置)做?其他的节点不用你操心,递归函数会帮你在所有节点上执行相同的操作。

1.二叉树的重要性

举个例子,比如两个经典排序算法 快速排序 和 归并排序,对于它俩,你有什么理解?

如果你告诉我,快速排序就是个二叉树的前序遍历,归并排序就是个二叉树的后序遍历,那么我就知道你是个算法高手了

如果你一眼就识破这些排序算法的底细,还需要背这些经典算法吗?不需要。你可以手到擒来,从二叉树遍历框架就能扩展出算法了。

说了这么多,旨在说明,二叉树的算法思想的运用广泛,甚至可以说,只要涉及递归,都可以抽象成二叉树的问题

2.深入理解前中后序

根据几个问题引发思考

1、你理解的二叉树的前中后序遍历是什么,仅仅是三个顺序不同的 List 吗?

2、请分析,后序遍历有什么特殊之处?

3、请分析,为什么多叉树没有中序遍历?

鄙人是肯定答不上来的

void traverse(TreeNode root) {
    if (root == null) {
        return;
    }
    // 前序位置
    traverse(root.left);
    // 中序位置
    traverse(root.right);
    // 后序位置
}

你也注意到了,只要是递归形式的遍历,都可以有前序位置和后序位置,分别在递归之前和递归之后。

所谓前序位置,就是刚进入一个节点(元素)的时候,后序位置就是即将离开一个节点(元素)的时候,那么进一步,你把代码写在不同位置,代码执行的时机也不同:

在这里插入图片描述

比如说,如果让你倒序打印一条单链表上所有节点的值,你怎么搞?

实现方式当然有很多,但如果你对递归的理解足够透彻,可以利用后序位置来操作

/* 递归遍历单链表,倒序打印链表元素 */
void traverse(ListNode head) {
    if (head == null) {
        return;
    }
    traverse(head.next);
    // 后序位置
    print(head.val);
}

教科书里只会问你前中后序遍历结果分别是什么,所以对于一个只上过大学数据结构课程的人来说,他大概以为二叉树的前中后序只不过对应三种顺序不同的 List<Integer> 列表。

但是我想说,前中后序是遍历二叉树过程中处理每一个节点的三个特殊时间点,绝不仅仅是三个顺序不同的 List:

  1. 前序位置的代码在刚刚进入一个二叉树节点的时候执行;
  2. 后序位置的代码在将要离开一个二叉树节点的时候执行;
  3. 中序位置的代码在一个二叉树节点左子树都遍历完,即将开始遍历右子树的时候执行。

在这里插入图片描述

这里你也可以理解为什么多叉树没有中序位置,因为二叉树的每个节点只会进行唯一一次左子树切换右子树,而多叉树节点可能有很多子节点,会多次切换子树去遍历,所以多叉树节点没有「唯一」的中序遍历位置。

重点1

二叉树的所有问题,就是让你在前中后序位置注入巧妙的代码逻辑,去达到自己的目的,你只需要单独思考每一个节点应该做什么,其他的不用你管,抛给二叉树遍历框架,递归会在所有节点上做相同的操作

3.两种解题思路

二叉树题目的递归解法可以分两类思路,第一类是遍历一遍二叉树得出答案,第二类是通过分解问题计算出答案,这两类思路分别对应着 回溯算法核心框架 和 动态规划核心框架

在这里插入图片描述

4.后序位置的特殊之处

中序位置主要用在 BST 场景中,你完全可以把 BST 的中序遍历认为是遍历有序数组。

前序位置本身其实没有什么特别的性质,之所以你发现好像很多题都是在前序位置写代码,实际上是因为我们习惯把那些对前中后序位置不敏感的代码写在前序位置罢了。

你可以发现,前序位置的代码执行是自顶向下的,而后序位置的代码执行是自底向上的:

在这里插入图片描述

重点2

但这里面大有玄妙,意味着前序位置的代码只能从函数参数中获取父节点传递来的数据,而后序位置的代码不仅可以获取参数数据,还可以获取到子树通过函数返回值传递回来的数据

举具体的例子,现在给你一棵二叉树,我问你两个简单的问题:

1、如果把根节点看做第 1 层,如何打印出每一个节点所在的层数?

2、如何打印出每个节点的左右子树各有多少节点?

第一个问题从根节点就能给出答案,而第二个问题必须遍历完子树之后才能给出答案

结合这两个简单的问题,你品味一下后序位置的特点,只有后序位置才能通过返回值获取子树的信息。

那么换句话说,一旦你发现题目和子树有关,那大概率要给函数设置合理的定义和返回值,在后序位置写代码了

例题lc543题 二叉树的直径

5.以树的视角看 动归/回溯/DFS算法的区别和联系

DFS 算法和回溯算法非常类似,只是在细节上有所区别

这个细节上的差别是什么呢?其实就是「做选择」和「撤销选择」到底在 for 循环外面还是里面的区别,DFS 算法在外面,回溯算法在里面。

为什么有这个区别?还是要结合着二叉树理解。这一部分我就把回溯算法、DFS 算法、动态规划三种经典的算法思想,以及它们和二叉树算法的联系和区别,用一句话来说明:

动归/DFS/回溯算法都可以看做二叉树问题的扩展,只是它们的关注点不同

  • 动态规划算法属于分解问题的思路,它的关注点在整棵「子树」
  • 回溯算法属于遍历的思路,它的关注点在节点间的「树枝」
  • DFS 算法属于遍历的思路,它的关注点在单个「节点」

三个例子解释三种情况

1.计算一棵二叉树有多少个节点?

// 定义:输入一棵二叉树,返回这棵二叉树的节点总数
int count(TreeNode root) {
    if (root == null) {
        return 0;
    }
    // 我这个节点关心的是我的两个子树的节点总数分别是多少
    int leftCount = count(root.left);
    int rightCount = count(root.right);
    // 后序位置,左右子树节点数加上自己就是整棵树的节点数
    return leftCount + rightCount + 1;
}

你看,这就是动态规划分解问题的思路,它的着眼点永远是结构相同的整个子问题,类比到二叉树上就是「子树」

你再看看具体的动态规划问题,比如 动态规划框架套路详解 中举的斐波那契的例子,我们的关注点在一棵棵子树的返回值上:

2.使用遍历的思路写一个traverse函数,打印出遍历这棵二叉树的过程

回溯算法遍历的思路,它的着眼点永远是在节点之间移动的过程,类比到二叉树上就是[树枝]

3.把二叉树的每个节点值都+1

void traverse(TreeNode root) {
    if (root == null) return;
    // 遍历过的每个节点的值加一
    root.val++;
    traverse(root.left);
    traverse(root.right);
}

你看,这就是 DFS 算法遍历的思路,它的着眼点永远是在单一的节点上,类比到二叉树上就是处理每个「节点」

你再看看具体的 DFS 算法问题,比如 一文秒杀所有岛屿题目 中讲的前几道题,我们的关注点是 grid 数组的每个格子(节点),我们要对遍历过的格子进行一些处理,所以我说是用 DFS 算法解决这几道题的:

有了这些铺垫,你就很容易理解为什么回溯算法和 DFS 算法代码中「做选择」和「撤销选择」的位置不同了,看下面两段代码:

// DFS 算法把「做选择」「撤销选择」的逻辑放在 for 循环外面
void dfs(Node root) {
    if (root == null) return;
    // 做选择
    print("我已经进入节点 %s 啦", root)
    for (Node child : root.children) {
        dfs(child);
    }
    // 撤销选择
    print("我将要离开节点 %s 啦", root)
}

// 回溯算法把「做选择」「撤销选择」的逻辑放在 for 循环里面
void backtrack(Node root) {
    if (root == null) return;
    for (Node child : root.children) {
        // 做选择
        print("我站在节点 %s 到节点 %s 的树枝上", root, child)
        backtrack(child);
        // 撤销选择
        print("我将要离开节点 %s 到节点 %s 的树枝上", child, root)
    }
}

看到了吧,你回溯算法必须把「做选择」和「撤销选择」的逻辑放在 for 循环里面,否则怎么拿到「树枝」的两个端点?

6.层序遍历(简单过一下)

二叉树题型主要是用来培养递归思维的,而层序遍历属于迭代遍历,也比较简单,这里就过一下代码框架吧:

// 输入一棵二叉树的根节点,层序遍历这棵二叉树
void levelTraverse(TreeNode root) {
    if (root == null) return;
    Queue<TreeNode> q = new LinkedList<>();
    q.offer(root);

    // 从上到下遍历二叉树的每一层
    while (!q.isEmpty()) {
        int sz = q.size();
        // 从左到右遍历每一层的每个节点
        for (int i = 0; i < sz; i++) {
            TreeNode cur = q.poll();
            // 将下一层节点放入队列
            if (cur.left != null) {
                q.offer(cur.left);
            }
            if (cur.right != null) {
                q.offer(cur.right);
            }
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/615110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

泵站远程启停

随着物联网技术的迅猛发展&#xff0c;传统泵站的管理方式正面临前所未有的变革。在这一变革的浪潮中&#xff0c;HiWoo Cloud平台凭借其卓越的技术实力和创新理念&#xff0c;为泵站远程启停控制带来了全新的解决方案。本文将详细介绍HiWoo Cloud平台在泵站远程启停方面的应用…

基于Python的飞机大战游戏

学习目标 了解 飞机大战游戏的规则 理解 面向对象思想,会独立设计游戏的类与模块 掌握 pygame模块的使用 1.1 游戏介绍 飞机大战是一款由腾讯公司微信团队推出的软件内置的小游戏,这款游戏画面简洁有趣,规则简单易懂,操作简便易上手,在移动应用兴起之初曾风靡一时。 1.1.…

Navicat导出表结构到Excel或Word

文章目录 sql语句复制到excel复制到Word sql语句 SELECTcols.COLUMN_NAME AS 字段,cols.COLUMN_TYPE AS 数据类型,IF(pks.CONSTRAINT_TYPE PRIMARY KEY, YES, NO) AS 是否为主键,IF(idxs.INDEX_NAME IS NOT NULL, YES, NO) AS 是否为索引,cols.IS_NULLABLE AS 是否为空,cols.…

Lombok介绍、使用方法和安装

目录 1 Lombok背景介绍 2 Lombok使用方法 2.1 Data 2.2 Getter/Setter 2.3 NonNull 2.4 Cleanup 2.5 EqualsAndHashCode 2.6 ToString 2.7 NoArgsConstructor, RequiredArgsConstructor and AllArgsConstructor 3 Lombok工作原理分析 4. Lombok的优缺点 5. 总结 1 …

Go实现树莓派读取at24c02 eeprom读写数据

步骤 启用i2c 参考 Go实现树莓派读取bh1750光照强度 代码 package mainimport ("fmt""periph.io/x/conn/v3/i2c" )type AT24C02Device struct {dev *i2c.Dev }func NewAT24C02Device(addr uint16, bus i2c.BusCloser) (*AT24C02Device, error) {var (d…

wordpress主题 7B2 PRO主题5.4.2免授权直接安装

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 WordPress 资讯、资源、社交、商城、圈子、导航等多功能商用主题&#xff1a;B2 PRO 其设计风格专业且时尚&#xff0c;功能十分强大&#xff0c;包括多栏布局、自定义页面、强大的主…

03c++重载运算符

1、深入理解new和delete原理 #include<iostream> using namespace std;/* new 和 delete 1、malloc和new的区别 new 内存开辟构造函数 2、free和 delete的区别 delete 内存回收析构函数 开辟失败malloc返nullptr ,new抛出bad_alloc异常new->operator new delete -&…

AppBuilder低代码体验:构建雅思大作文组件

AppBuilder低代码体验&#xff1a;构建雅思大作文组件 ​ 在4月14日&#xff0c;AppBuilder赢来了一次大更新&#xff0c;具体更新内容见&#xff1a;AppBuilder 2024.04.14发版上线公告 。本次更新最大的亮点就是**新增了工作流&#xff0c;低代码制作组件。**具体包括&#x…

JavaEE初阶-多线程4

文章目录 一、单例模式1.1 饿汉模式1.2 懒汉模式 二、阻塞队列1.1 生产者消费者模型1.1.1 现实生活举例1.1.2 生产者消费模型的两个优势1.1.2.1 解耦合1.1.2.2 削峰填谷 1.2 阻塞队列代码1.2.1 使用java标准库的阻塞队列实现生产者消费者模型1.2.2 实现自己的阻塞队列 一、单例…

【Go语言初探】(一)、Linux开发环境建立

一、操作系统选择 选择在Windows 11主机上运行的CentOS 7 Linux 虚拟机&#xff0c;虚拟化平台为VMWare Workstation. 二、安装Go语言环境 访问Go语言官网&#xff0c;选择Linux版本下载&#xff1a; 解压&#xff1a; tar -xvf go1.22.3.linux-amd64.tar.gz检验安装结果&…

uniapp + vue3 使用axios

场景 uniapp自带的uni.request不太好用&#xff0c;也有可能是自己用axios用的太熟悉了&#xff0c;所以还是用axios趁手点&#xff0c;所以尝试在uniapp中使用axios。 操作 因为uniapp项目没有package.json&#xff0c;所以先在项目根目录下执行 npm init, 执行完毕后直接…

算法设计与分析 例题解答 解空间与搜索

1.请画出用回溯法解n3的0-1背包问题的解空间树和当三个物品的重量为{20, 15, 10}&#xff0c;价值为{20, 30, 25}&#xff0c;背包容量为25时搜索空间树。 答&#xff1a; 解空间树&#xff1a; 搜索空间树&#xff1a; 2. 考虑用分支限界解0-1背包问题 给定n种物品和一背包…

线路和绕组中的波过程(三)

本篇为本科课程《高电压工程基础》的笔记。 本篇为这一单元的第三篇笔记。上一篇传送门。 冲击电晕对线路上波过程的影响 实际中的导线存在电阻&#xff0c;而且还有对地电导&#xff0c;会消耗一部分能量。但是因为雷击所涉及的传输距离很短&#xff0c;所以几乎可以忽略这…

JS代码随想录(一):数组

代码随想录 一、数组理论基础 二、LeetCode 704. 二分查找 三、LeetCode 27. 移除元素 四、LeetCode 977.有序数组的平方 五、LeetCode 209.长度最小的子数组 六、LeetCode 59.螺旋矩阵II 七、数组总结 一、数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合。 数组…

你真的会用 ChatGPT 吗?来看看这 4 个模式,让你的 AI 技能更上一层楼!(上)

一年半已经过去&#xff0c;ChatGPT 虽然风靡一时&#xff0c;但真正发挥其超过 30% 效能的人却寥寥无几。许多资深用户依然沿用传统的人机交互方式&#xff0c;认为只需要事无巨细地编写指令&#xff0c;让 AI 服从即可。大多数人并不了解这些生成式 AI 的某些不为人之的特性&…

第四百九十八回

文章目录 1. 概念介绍2. 使用方法2.1 固定样式2.2 自定义样式 3. 示例代码4. 内容总结 我们在上一章回中介绍了"GetMaterialApp组件"相关的内容&#xff0c;本章回中将介绍使用get显示SnackBar.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在介…

python自动化办公的代码

以下是一个简单的Python自动化办公代码示例&#xff0c;用于实现一些基本的自动化任务&#xff0c;例如打开文件、读取数据、写入数据和保存文件等。 python import os # 打开文件 def open_file(filename): try: file open(filename, r) data file.read() file.close() ret…

如果你的Google ads账号被暂停了怎么办?

Google Ads账号暂停可能会导致您的企业收入损失。但实际上&#xff0c;除了一些特殊情况外&#xff0c;Google Ads帐户暂停几乎不是永久性的。如果您的帐户已被暂停&#xff0c;有多种方法可以恢复该帐户。 废话不多说&#xff0c;下面为大家分享&#xff01; 一、谷歌广告帐户…

用于视频识别的快慢网络

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读&#xff1a;用于视频识别的快慢网络1、文献摘要2、提出方法2.1、SlowFast模型2.2、SlowFast 提出思想 3、相关方法3.1、时空间卷积3.2、基于光…

安卓开发--按键跳转页面

安卓开发--按键跳转页面 前言1. 按键页面跳转1.1 新建布局文件1.2 衔接布局文件&#xff0c;新建Java class类文件1.3 衔接布局文件&#xff0c;修改AndroidManifest.xml文件1.4 调用布局文件1.5 最终效果 前面已经介绍了一个空白按键工程的建立以及响应方式&#xff0c;可以参…