MySQL系列之索引

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄

🌹简历模板、学习资料、面试题库、技术互助

🌹文末获取联系方式 📝

在这里插入图片描述


往期热门专栏回顾

专栏描述
Java项目实战介绍Java组件安装、使用;手写框架等
Aws服务器实战Aws Linux服务器上操作nginx、git、JDK、Vue
Java微服务实战Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc等实战操作
Java基础篇Java基础闲聊,已出HashMap、String、StringBuffer等源码分析,JVM分析,持续更新中
Springboot篇从创建Springboot项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回、全局异常处理、Swagger文档
Spring MVC篇从创建Spring MVC项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回
华为云服务器实战华为云Linux服务器上操作nginx、git、JDK、Vue等,以及使用宝塔运维操作添加Html网页、部署Springboot项目/Vue项目等
Java爬虫通过Java+Selenium+GoogleWebDriver 模拟真人网页操作爬取花瓣网图片、bing搜索图片等
Vue实战讲解Vue3的安装、环境配置,基本语法、循环语句、生命周期、路由设置、组件、axios交互、Element-ui的使用等
Spring讲解Spring(Bean)概念、IOC、AOP、集成jdbcTemplate/redis/事务等

MySQL专栏回顾

专栏导航描述
MySQL- -MySQL DDL通用语法
MySQL- -MySQL DML通用语法
MySQL- -MySQL 约束篇
MySQL- -MySQL 多表查询
MySQL- -MySQL 事务
MySQL- -MySQL 存储引擎
MySQL- -MySQL 性能分析
MySQL- -MySQL 索引

前言

此为MySQL专栏文章之一,讲解MySQL 索引。

索引是帮助 MySQL 高效获取数据 的 数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。

优点:
● 提高数据检索效率,降低数据库的IO成本
● 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗
缺点:
● 索引列也是要占用空间的
● 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE


1、索引结构

在这里插入图片描述
在这里插入图片描述

1.1、B-Tree

在这里插入图片描述

[二叉树]

二叉树的缺点可以用红黑树来解决:
在这里插入图片描述

[红黑树]

红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。

为了解决上述问题,可以使用 B-Tree 结构。
B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例(每个节点最多存储4个key,5个指针)
在这里插入图片描述

[B-Tree结构]

B-Tree 的数据插入过程动画参照:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=68
演示地址:https://www.cs.usfca.edu/~galles/visualization/BTree.html

1.2、B+Tree

结构图:
在这里插入图片描述

[B+Tree结构]

演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

与 B-Tree 的区别:
● 所有的数据都会出现在叶子节点
● 叶子节点形成一个双向链表(???双向还是单向)

MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。

在这里插入图片描述

[MySQL B+Tree 结构图]

1.3、Hash

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
在这里插入图片描述

[Hash索引原理图]

特点:
● Hash索引只能用于对等比较(=、in),不支持范围查询(betwwn、>、<、…)
● 无法利用索引完成排序操作
● 查询效率高,通常只需要一次检索就可以了,效率通常要高于 B+Tree 索引

存储引擎支持:
● Memory
● InnoDB: 具有自适应hash功能,hash索引是存储引擎根据 B+Tree 索引在指定条件下自动构建的

1.4、面试题

  1. 为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?
    ● 相对于二叉树,层级更少,搜索效率高
    ● 对于 B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低
    ● 相对于 Hash 索引,B+Tree 支持范围匹配及排序操作

2、索引分类

在这里插入图片描述
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
在这里插入图片描述
演示图:
在这里插入图片描述

[大致原理]

在这里插入图片描述

[演示图]

聚集索引选取规则:

● 如果存在主键,主键索引就是聚集索引
● 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
● 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引

思考题

  1. 以下 SQL 语句,哪个执行效率高?为什么?
    select * from user where id = 10;
    select * from user where name = ‘Arm’;
    – 备注:id为主键,name字段创建的有索引
    答:第一条语句,因为第二条需要回表查询,相当于两个步骤。

  2. InnoDB 主键索引的 B+Tree 高度为多少?
    答:假设一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8.
    可得公式:n * 8 + (n + 1) * 6 = 16 * 1024,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。

    如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736;
    如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856。

    另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。

3、索引语法

创建索引:

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...);
如果不加 CREATE 后面不加索引类型参数,则创建的是常规索引

查看索引:

SHOW INDEX FROM table_name;

删除索引:

DROP INDEX index_name ON table_name;

案例:

-- name字段为姓名字段,该字段的值可能会重复,为该字段创建索引
create index idx_user_name on tb_user(name);
-- phone手机号字段的值非空,且唯一,为该字段创建唯一索引
create unique index idx_user_phone on tb_user (phone);
-- 为profession, age, status创建联合索引
create index idx_user_pro_age_stat on tb_user(profession, age, status);
-- 为email建立合适的索引来提升查询效率
create index idx_user_email on tb_user(email);

-- 删除索引
drop index idx_user_email on tb_user;

4、使用规则

4.1、最左前缀法则

如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
如果跳跃某一列,索引将部分失效(后面的字段索引失效)。

联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。

4.2、索引失效情况

  1. 在索引列上进行运算操作,索引将失效。如:explain select * from tb_user where substring(phone, 10, 2) = ‘15’;
  2. 类型不一致引起的隐式类型转换,;例如 字符串类型字段使用时,不加引号,索引将失效。如:explain select * from tb_user where phone = 17799990015;,此处phone的值没有加引号
  3. 模糊查询中,如果仅仅是尾部模糊匹配,索引是不会失效的;如果是头部模糊匹配,索引失效。如:explain select * from tb_user where profession like ‘%工程’;,前后都有 % 也会失效。
  4. 用 or 分割开的条件,如果 or 其中一个条件的列没有索引,那么涉及的索引都不会被用到。
  5. 如果 MySQL 评估使用索引比全表更慢,则不使用索引。

4.3、SQL 提示

是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

例如
使用索引:
explain select * from tb_user use index(idx_user_pro) where profession="软件工程";
不使用哪个索引:
explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";
必须使用哪个索引:
explain select * from tb_user force index(idx_user_pro) where profession="软件工程";

use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。

4.4、覆盖索引&回表查询

尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。

explain 中 extra 字段含义:
using index condition:查找使用了索引,但是需要回表查询数据
using where; using index;:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询

如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;
如果在辅助索引中找聚集索引,如select id, name from xxx where name=‘xxx’;,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;
如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name=‘xxx’;

所以尽量不要用select *,容易出现回表查询,降低效率,除非有联合索引包含了所有字段

面试题:
一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案:
select id, username, password from tb_user where username=‘wahaha’;

解:给 username 和 password 字段建立联合索引,则不需要回表查询,直接覆盖索引。

4.5、前缀索引

当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只降字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

语法:create index idx_xxxx on table_name(columnn(n));

前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

求选择性公式:

select count(distinct email) / count(*) from tb_user;
select count(distinct substring(email, 1, 5)) / count(*) from tb_user;

show index 里面的 sub_part 可以看到截取的长度。

4.6、单列索引&联合索引

单列索引:即一个索引只包含单个列
联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

单列索引情况:
explain select id, phone, name from tb_user where phone = ‘17799990010’ and name = ‘韩信’;
这句只会用到phone索引字段

注意事项

● 多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询

5、设计原则

  1. 针对于数据量较大,且查询比较频繁的表建立索引
  2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引
  3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高
  4. 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引
  5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率
  6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率
  7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询


资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/614857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

为啥我说英语能决定程序员的天花板?

看到知乎有这样的一个问题&#xff0c;作为程序员的你&#xff0c;大学最后悔没有好好学哪门课&#xff1f; 很多人回答《软件工程》、《线性代数》、《微积分》等&#xff0c;各种都有。。 但我觉得&#xff0c;这些课都很重要&#xff0c;但没学好不妨碍自学。 其实对程序…

避雷:搭建AI知识库注意事项

AI知识库作为信息存储和进行智能处理的核心部分&#xff0c;受到越来越多企业的重视。为了更好地发展&#xff0c;企业也纷纷开始搭建AI知识库。然而&#xff0c;在搭建AI知识库的过程中&#xff0c;也有很多雷区容易踩到&#xff0c;导致项目延迟、效果不佳甚至失败。所以&…

GPT-SoVits:语音克隆,语音融合

首发网站 https://tianfeng.space 前言 零样本文本到语音&#xff08;TTS&#xff09;&#xff1a; 输入 5 秒的声音样本&#xff0c;即刻体验文本到语音转换。少样本 TTS&#xff1a; 仅需 1 分钟的训练数据即可微调模型&#xff0c;提升声音相似度和真实感。跨语言支持&…

使用xtuner微调InternLM-Chat-7B

1. 安装xtuner #激活环境 source activate test_llm # 安装xtuner pip install xtuner#还有一些依赖项需要安装 future>0.6.0 cython lxml>3.1.0 cssselect mmengine 2. 创建一个ft-oasst1 数据集的工作路径&#xff0c;进入 mkdir ft-oasst1 cd ft-oasst1 3.XTune…

树的基本介绍

引入 定义 表示 相关概念 结点&#xff1a;数据元素与指向分支的指针两部分组成 树的深度&#xff1a;树中结点的最大层次 将树A结点(根结点)去掉&#xff0c;树A就变成了森林 区别 实现

内存拆解分析表:学习版[图片]

对拆解system中主要是对比测试机和对比机之间的差距&#xff0c;测试机那些地方高于对比机 拆解表&#xff0c;作为理解 在拆解表中system测试机比对比机多出113M 这说明是有问题的 对system拆解&#xff1a; system12345对比机9102294380941069391081628测试机10252010331…

【Python系列】字节串与字典字节串

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

模拟集成电路(3)----单级放大器(共源极)

模拟集成电路(3)----单级放大器&#xff08;共源极&#xff09; 放大是模拟电路的基本功能 大多数自然模拟信号太小而无法处理需要足够的信噪比 理想的放大器 线性&#xff1a;无限的幅度和频率范围 输入阻抗无限大 输出阻抗无限小 共源放大器 共源放大器就是将源极接A…

关于Matplotlib如何在网页中使用?

目录 一、如何在网页中使用matplotlib 二、如何使用mpld3在网页中显示图表 三、如何使用matplotlibflask在网页中显示图表 一、如何在网页中使用matplotlib Matplotlib是Python中一个非常流行的可视化库。然而&#xff0c;Matplotlib主要是为桌面应用程序设计的&#xff0c;…

初识java--javaSE(3)--方法,递归,数组,

文章目录 一 方法的使用1.1 什么是方法&#xff1f;main方法注意事项 1.2 方法的调用嵌套调用在方法调用时形参与实参的关系&#xff1a; 1.3 方法的重载方法重载的意义&#xff1f;总结方法重载&#xff1a;方法签名&#xff1a; 二 递归什么是递归&#xff1f;递归的精髓&…

BUU-[GXYCTF2019]Ping Ping Ping

考察点 命令执行 题目 解题 简单测试 ?ip应该是一个提示&#xff0c;那么就测试一下?ip127.0.0.1 http://0c02a46a-5ac2-45f5-99da-3d1b0b951307.node4.buuoj.cn:81/?ip127.0.0.1发现正常回显 列出文件 那么猜测一下可能会有命令执行漏洞&#xff0c;测试?ip127.0.…

Github图片显示不出来?两步解决!

很多同学可能和我一样&#xff0c;在GitHub中找一些项目或者资料的时候&#xff1b;总是会看到一些图片显示不出来&#xff0c;或者数学公式乱码&#xff1a; 比如这样 还有这样 其实这个主要是因为DNS污染导致的&#xff0c;具体大家可以百度&#xff0c;这边不详细介绍。 解决…

libcity笔记:

1 __init__ 2 encode 得到的内容如下&#xff1a; data_feature的内容&#xff1a; 一共有多少个location1【包括pad的一个】最长的时间间隔&#xff08;秒&#xff09;最长的距离间隔&#xff08;千米&#xff09;多少个useer idpadding 的locationidpad_item的内容 location…

ppt---C语言

注意某些符号和我们手写的不一样&#xff08;&#xff09;乘法&#xff0c;除法等

实现桌面动态壁纸——认识 WebView2 控件

目录 前言 一、什么是 WebView2 &#xff1f; 二、使用示例存储库 2.1 下载存储库 2.2 编译解决方案项目文件 2.3 运行示例程序 三、如何修改 WebView2 示例 本文来源于&#xff1a;https://blog.csdn.net/qq_59075481/article/details/138637909。 前言 上一节我们讲…

05-10 周五 FastBuild 容器启动引起超时问题定位与解决

05-10 周五 FastBuild 容器启动超时问题 时间版本修改人描述2024年5月11日16:45:33V0.1宋全恒新建文档2024年5月11日22:37:21V1.0宋全恒完成解决方案的撰写&#xff0c;包括问题分析&#xff0c;docker命令 简介 关于FastBuild的优化&#xff0c;已经撰写了多个博客&#xff0…

书生浦语训练营第四次课作业

基础作业 环境配置 拷贝internlm开发机内的环境 studio-conda xtuner0.1.17# 激活环境 conda activate xtuner0.1.17 # 进入家目录 &#xff08;~的意思是 “当前用户的home路径”&#xff09; cd ~ # 创建版本文件夹并进入&#xff0c;以跟随本教程 mkdir -p /root/xtuner0…

Celery Redis 集群版连接和PyCharm启动配置

目录 使用Redis cluster版作为broker原因 PyCharm配置 使用Redis cluster版作为broker 在celery5及其之前版本&#xff0c;需要配置如下才可行 celery_app.conf.update( broker_transport_options{“global_keyprefix”: “{celery}:”}, ) 原因 https://github.com/celery/…

【练习4】

1.两数之和 暴力&#xff1a; class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {int n nums.size();vector<int> res(2, -1); // 初始化结果为-1for (int i 0; i < n; i) {int temp nums[i];for (int j i 1; j <…

若依修改表格滚动条宽度

找到目录ruoyi-ui/src/assets/styles/ruoyi.scss 添加滚动条样式 //修改滚动条的宽度和高度&#xff08;横向是高度&#xff0c;纵向是宽度&#xff09;::-webkit-scrollbar {width: 14px;height: 14px;background-color: transparent;}