示例六、湿敏传感器

通过以下几个示例来具体展开学习,了解湿敏传感器原理及特性,学习湿敏传感器的应用:

示例六、湿敏传感器

一、基本原理:随着人们生活水平的不断提高,湿度监控逐步提到议事日程上。由于北方地区秋冬季干燥,需要控制室内温湿度:温室大棚,需要控制温湿度:医院保育室需要控制温湿度等。温湿度控制与人们的日常生活密切相关。
1、温湿度敏传感器的特性
SHTx系列单芯片传感器是一款含有已校准数字信号输出的温湿度复合传感器。该芯片包括一个电容式聚合体测湿元件和一个能隙式测温元件,并与一个14位的A-D转换器以及串行接口电路在同一芯片上实现无缝连接。因此,该产品具有品质卓越、超快响应、抗干扰能力强等优点。
每个SHTx传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式存储在OTP内存中,传感器内部在对检测信号的处理过程中要调用这些校准系数进行修正。两线制串行接口和内部基准电压,使系统集成变得简易快捷。超小的体积、极低的功耗,使其成为各类应用甚至最为苛刻的应用场合的最佳选择。
1)结构及引脚
该产品提供表面贴片LCC(无铅芯片)或4针单排引脚封装,如图7-23所示。可根据用户需求提供特殊封装形式。 SHTXX内部结构如图7-24所示。
2)测量精度
不同型号的芯片,测量精度不同,如表7-1所示。
在这里插入图片描述

在这里插入图片描述

3)接口
SHTx采用2线制通信机制,类似c总线,但不兼容C总线。与单片机的典型接口如图7-25所示。系统采用主从式串行通信。
SHTx的供电电压为2.4~5.5V。传感器上电后,要等待11ms以越过“休眠”状态。在此期间无需发送任何指令。电源引脚(UD,GND)之间可增加一个100nF的电容,用于去耦滤波。
在这里插入图片描述

SHTXX I的串行接口,在传感器信号的读取及电源功耗方面,都做了优化处理:但与1C接口并不兼容SCK用于微处理器与 SHTXX之间的通信同步。由于接口包含完全静态逻辑,因此不存在最小SCK频率。
DATA三态门用于数据的读取。DATA在SCK时钟下降沿之后改变状态,并仅在SCK时钟上升沿有效。数据传输期间,在SCK时钟高电平时,DATA必须保持稳定。为避免信号冲突,微处理器应驱动DATA在低电平。需要一个外部的上拉电阻(如10k2)将信号提拉至高电平。上拉电阻通常已包含在微处理器的IO电路中。
传感器用一组“启动传输”时序,来表示数据传输的初始化,如图726所示。它包括:当SCK时钟为高电平时DATA翻转为低电平,紧接着SCK变为低电平,随后是在SCK时钟为高电平时DATA翻转为高电平。
在这里插入图片描述

后续命令包含三个地址位(目前只支持“000和五个命令位。 SHTXX会以下述方式表示己正确地接收到指令:在第8个SCK时钟的下降沿之后,将DATA下拉为低电平(ACK位)。在第9个SCK时钟的下降沿之后,释放DATA(恢复高电平)。
4)命令集
SHTx命令集如表7-2所示。
在这里插入图片描述

5)测量时序(RH和T)
发布一组测量命令(“00000101表示相对湿度RH,“00000011”表示温度T)后,控制器要等待测量结東。这个过程需要20/80/320ms,分别对应812/14位测量。确切的时间与内部晶振速度有关,最多可能有30%的变化。 SHTXX通过下拉DATA至低电平并进入空闲模式,表示测量的结束。控制器在再次触发SCK时钟前,必须等待这个“数据备妥”信号来读出数据。检测数据可以先被存储,这样控制器可以继续执行其他任务在需要时再读出数据。
接着传输2个字节的测量数据和1个字节的CRC奇偶校验。单片机需要通过下拉DATA为低电平,以确认每个字节。所有的数据从MSB开始,右值有效(例如,对于12位数据,从第5个SCK时钟起算作MSB:而对于8位数据,首字节则无意义)。用CRC数据的确认位,表明通信结束。如果不使用CRC-8校验,控制器可以在测量值LSB后,通过保持确认位ACK高电平,来中止通信。在测量和通信结東后, SHTXX自动转入休眠模式。其时序如图7-27所示。
在这里插入图片描述

为保证自身温升低于0.1C,SHTx的激活时间不要超过10%。例如,对应12位精度测量,每秒最多进行2次测量。
6)通信复位时序
如果与SHTx通信中断,下列信号时序可以复位串口
当DATA保持高电平时,触发SCK时钟9次或更多。在下一次指令前,发送一个“传输启动”时序,如图7-28所示。这些时序只复位串口,状态寄存器内容仍然保留。

在这里插入图片描述

7)校验
数字信号的整个传输过程由8位CRC校验来确保。任何错误数据都将被检测到
并清除。
8)测量分辨率
默认的测量分辨率分别为14位(温度)12位(湿度),也可通过设置指定的寄存
器,分别降至12位和8位。通常在高速或超低功耗的应用中采用该功能。
9)加热元件
传感器芯片上集成了一个可通断的加热元件。接通后,可将SHTx的温度提高5~15℃(9~27T)。功耗增加8mA,5V。比较加热前后的温度和湿度值,可以综合验证两个传感器元件的性能。在高湿度(>95%RH)环境中,加热传感器可防止凝露,同时缩短其响应时间,提高测量精度。加热后较加热前,SHTx温度值略有升高、相对湿度值稍有降低。
2温湿度监控器的硬件设计
1、温湿度监控器的系统结构
温湿度监控器系统以单片机AT89S2为控制核心,用SHT10作为温湿度检测元件,用LCD1602显示环境温湿度,如图7-22所示。系统启动后,SHT10将环境温湿度转换二进制数,存于器件内部的寄存器中,单片机从指定的寄存器中读取环境温湿度值,并与设定的温湿度上下限值比较,超出上下限时,报警提示。可以开启风扇、空调、加湿器等进行调节。
在这里插入图片描述

2.温湿度监控器的系统电路原理
温湿度监控器的系统原理如图7-29所示。上电运行后,可按键设置温湿度的上下限值,当温度达到上限值时,电动机M1正转并且蜂鸣器响,同时LED2闪烁:当温度达到下限值时,电动机M1反转并且蜂鸣器响,同时LED1闪烁。湿度达到上限时,电动机M2正转并且蜂呜器响,同时LED4闪烁:当湿度达到下限时,电动机M2反转并且蜂鸣器响,同时LED3闪烁。
图6-24系统原理图:
在这里插入图片描述

二、湿度监控器的软件设计
1.主程序
程序上电后,要对LCD1602、单片机等进行初始化工作,将SHT10传感器复位,
在无外界操作前,不断进行按键、报警、读取数据等子程序的循环扫描。一旦有操作,则跳入相应的模块程序执行相应的功能,如图7-30所示。
2.LCD1602显示模块
初始化LCD1602显示模块,设置8位格式,2行,5x7矩阵显示,关光标,不闪烁,
增量不移位,清除屏幕显示,延时等待,将采集到的温湿度数据进行转换,将十六进制
数据转换成十进制后,判断是否在第一行显示,输入相应的地址数据,延时等待,输入
需要显示的数据,如图7-31所示。
在这里插入图片描述

3.报警模块
首先对温度的上下限值进行判断,做相应的报警及驱动处理:再对湿度的上下限值进行判断,做相应的报警及驱动处理,如图732所示
4.按健模块
系统主要有四个按键,分别为复位键K、功能选择键K、按键加K2和按键减K按键的扫描流程如图73所示。当第一次扫描到有按键按下时,不会立刻行动,而是先调用廷时消抖动子程序,经过一段时间后再判断是否真的有按键按下,然后根据按下的键进行相关操作,若判断并没有按键按下只是抖动,则继续扫描按键。
在这里插入图片描述

SHT10的读写流程严格按照SHT10的读写时序进行,不再资述。
4、温湿度监控器的源程序

//*********************第二部分DHT90设置   
bit set_temp_up=0;
bit set_temp_down=0;
bit set_humidity_up=0;
bit set_humidity_down=0;

 
sbit SCK  = P3^2;      //定义通讯时钟端口 
sbit DATA = P3^3;      //定义通讯数据端口 
sbit D1=P3^4;   //定义温度报警端口
sbit D2=P3^5;	   //定义湿度报警端口
sbit D3=P3^6;   //定义温度报警端口
sbit D4=P3^7;	   //定义湿度报警端口
sbit key_set=P1^3;//设置功能选择键
sbit key_up=P1^4;//数字键加+
sbit key_down=P1^5;//数字键减-

uchar selectnum=0,downnum=0,checknum;
uchar value_shi,value_ge,downnum_shi,downnum_ge;
uchar  shidu_shi,shidu_ge,wendu_shi,wendu_ge;
sbit PWMZ = P2^0;      //定义调速端口
sbit PWMF = P2^1;      //定义调速端口
sbit PWMZ2 = P2^3;      //定义调速端口
sbit PWMF2 = P2^4;      //定义调速端口
sbit Alarm = P2^5;
bit temp_alarm_flag=1;
bit rh_alarm_flag=1;
unsigned char CYCLE;  //定义周期 该数字X基准定时时间 如果是10 则周期是10 x 0.1ms
unsigned char PWM_ON ;//定义高电平时间
uchar flag;
unsigned char CYCLE2;  //定义周期 该数字X基准定时时间 如果是10 则周期是10 x 0.1ms
unsigned char PWM_ON2 ;//定义高电平时间
uchar flag2;
uchar temp_uplimit,temp_lowlimit,humidity_uplimit,humidity_lowlimit;
unsigned int Alarm_temp_up=260,Alarm_temp_low=240,Alarm_humidity_up=700,Alarm_humidity_low=500;
unsigned int wendu,shidu; 
typedef union   
{ 
 	unsigned int i;      //定义了两个共用体 
  	float f;  
} value;  

enum {TEMP,HUMI};      //TEMP=0,HUMI=1 
  

#define noACK 0             //用于判断是否结束通讯 
#define ACK   1             //结束数据传输 
                            //adr  command  r/w  
#define STATUS_REG_W 0x06   //000   0011    0  
#define STATUS_REG_R 0x07   //000   0011    1  
#define MEASURE_TEMP 0x03   //000   0001    1  
#define MEASURE_HUMI 0x05   //000   0010    1  
#define RESET        0x1e   //000   1111    0  
…….
……
/*--------------------------------------  
;模块名称:calc_dht90();  
;功    能:温湿度补偿函数 
;-------------------------------------*/  
void calc_dht90(float *p_humidity ,float *p_temperature) 
{ 
	const float C1=-4.0;              // 定义C1为浮点数类型
  	const float C2=+0.0405;           //  定义C2为浮点数类型 
  	const float C3=-0.0000028;        //  定义C3为浮点数类型
  	const float T1=+0.01;              // 定义T1为浮点数类型
  	const float T2=+0.00008;           // 定义T1为浮点数类型

  	float rh=*p_humidity;             // 定义rh为浮点数类型
    float t=*p_temperature;           // 定义t为浮点数类型
   	float rh_lin;                     // 定义rh_lin为浮点数类型
  	float rh_true;                    // 定义rh_true为浮点数类型
  	float t_C;                        // 定义t_C为浮点数类型 
    t_C=t*0.01 - 40;                  //温度补偿
  	rh_lin=C3*rh*rh + C2*rh + C1;     //湿度补偿 
  	rh_true=(t_C-25)*(T1+T2*rh)+rh_lin;  //计算湿度值 
  	if(rh_true>100)rh_true=100;       //如果测量到的数据大于100,取值为100 
  	if(rh_true<0.1)rh_true=0.1;       //确定测量精度为一位小数点

  	*p_temperature=t_C;               //返回温度值 
  	*p_humidity=rh_true;              //返回湿度值 
}

三、数据记录:
1、温湿度传感器实验数据记录(相对湿度为室温25°C时,测量的值)
在这里插入图片描述

2、温湿度传感器的灵敏度曲线图(温度,湿度分别绘制)
在这里插入图片描述
在这里插入图片描述

3、默认报警温度为24-26度,湿度50-70%,通过按键把报警温度调整为22-25度,湿度40-60%,改变SHT10的温湿度值,观察指示灯的跳变情况。
跳变情况:指示灯由D1和D3变为D2和D3

四、思考:
分析SHT10温湿度传感器的测量时序图中,SCK时钟信号和DATA信号的对应关系,DATA信号中命令部分、温度数据、湿度数据以及CRC校验数据的时序关系?
1.当SCK时钟为高电平时,DATA由高电平反转为低电平,随后是在SCK高电平时DATA由低电平反转为高电平在第八个SCK的下降沿之后将DATA下拉为低电平作为ACK位,并在第九个SCK时钟的下降沿之后释放DATA(恢复高电平)
2.温度测量命令:000 00011 3个SHT1地址位 000 和五个命令位 SHT1会以下述方式表示正确的接收到指令:在第8个SCK时钟的下降沿之后,将DATA下拉为低电平(ACK位)。在第9个时钟下降沿之后,释放DATA(恢复高电平)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/614549.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mamba复现—mamba+yolov8魔改(win)

Mamba复现出现的问题 安装下列步骤一步步走 一、 注&#xff1a;若是Windows环境下python一定是3.10版本的&#xff0c;要不然trition无法安装 conda create -n mamba python3.10 conda activate mamba conda install cudatoolkit11.8 -c nvidia pip install torch2.1.1 t…

在MyBatis中,如何将数据库中的字符串类型映射为枚举类型?

在MyBatis中&#xff0c;如何将数据库中的字符串类型映射为枚举类型&#xff1f; 网上看了很多教程。说了很多&#xff0c;但是都没说到重点&#xff01; 很简单&#xff0c;xml文件中&#xff0c; 使用resultType&#xff0c;而不是使用resultMap就可以了。 resultType"…

示例七、超声波传感器测距

通过以下几个示例来具体展开学习,了解超声波传感器原理及特性&#xff0c;学习超声波传感器的应用&#xff1a; 示例七、超声波传感器测距 一、基本原理&#xff1a; 1、超声波测距仪的系统结构 利用超声测距原理测量物体之间的距离&#xff0c;当此距离小于某一设定值时&…

信创 | 高效信创项目管理:关键步骤与实用技巧!

高效信创项目管理的关键步骤与实用技巧可以从多个维度进行分析和总结。首先&#xff0c;建立有效的工程管理体系是确保信创项目顺利实施的基础&#xff0c;这包括项目管理、质量管理、成本控制等方面的工作。其次&#xff0c;实现项目全流程精细化管理&#xff0c;如信息的及时…

028.实现 strStr()

题意 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 难度 简单 示例 例 1 输入&#xff1a;hays…

Day 44 完全背包理论基础 518. 零钱兑换 II 377. 组合总和 Ⅳ

完全背包理论基础 ​ 完全背包和0-1背包的最大区别在于完全背包里的每个物品的数量都是无限个&#xff0c;而0-1背包每个物品只有一个&#xff1b; 内嵌循环遍历顺序 ​ 回顾一维数组0-1背包的遍历递推公式&#xff1a; for (int i 0&#xff1b; i < weight.size(); i)…

线程知识点

一、线程 1.定义 线程&#xff1a;是一个进程并发执行多种任务的机制。 串行&#xff1a;多个任务有序执行&#xff0c;一个任务执行完毕后&#xff0c;再去执行下一个任务 并发&#xff1a;多个任务在单个CPU上运行&#xff0c;同一个时间片上只能运行一个任务&#xff0c;c…

漫谈AI时代的手机

以chatGPT 为代表的大语言的横空出世使人们感受到AI 时代的到来&#xff0c;大语言模型技术的最大特点是机器开始”懂人话“&#xff0c;”说人话“了。如同任何一个革命性工具的出现一样&#xff0c;它必将改变人类生活和工作。 在这里。我谈谈AI时代的手机。 语音通信的历史…

如何将Hyper-V转VMware?反之亦可

为何要在Hyper-V和VMware之间进行转换呢&#xff1f; 尽管VMware和Microsoft Hyper-V都是当前流行的一类虚拟机监控程序&#xff0c;但它们并不相互兼容。VMware产品使用VMDK格式创建虚拟磁盘&#xff0c;而Hyper-V则使用VHD或VHDX格式创建虚拟磁盘。 有时您可能需要进行这种转…

找不到msvcp120dll,无法继续执行代码的多种解决方法分享

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“msvcp120.dll丢失”。这个错误通常会导致某些应用程序无法正常运行。为了解决这个问题&#xff0c;我们需要采取一些措施来修复丢失的msvcp120.dll文件。本文将介绍6种常见的解决方法&…

cubic 相比 bbr 并非很糟糕

迷信 bbr 的人是被它的大吞吐所迷惑&#xff0c;我也不想再解释&#xff0c;但我得反过来说一下 cubic 并非那么糟。 想搞大吞吐的&#xff0c;看看我这个 pixie 算法&#xff1a;https://github.com/marywangran/pixie&#xff0c;就着它的思路改就是了。 cubic 属于 aimd-ba…

c++ STL 之栈—— stack 详解

vector 是 stl 的一个关联容器,名叫“栈”&#xff0c;何为“栈”&#xff1f;其实就是一个数组&#xff0c;但有了数组何必还需栈&#xff0c;这是一个高深的问题。 一、简介 1. 定义 栈&#xff0c;是一个柔性数组&#xff08;可变长数组&#xff09;&#xff0c;可以变大变小…

【qt】纯代码界面设计

界面设计目录 一.界面设计的三种方式1.使用界面设计器2.纯代码界面设计3.混合界面设计 二.纯代码进行界面设计1.代码界面设计的总思路2.创建项目3.设计草图4.添加组件指针5.初始化组件指针6.添加组件到窗口①水平布局②垂直布局③细节点 7.定义槽函数8.初始化信号槽9.实现槽函数…

最新!TOP200高校!5月ESI排名,公布!

【SciencePub学术】5月9日&#xff0c;ESI数据库更新了2024年5月最新ESI数据。据统计&#xff0c;全球共有9019家科研机构上榜&#xff0c;其中有449所中国内地高校。 ESI&#xff08;基本科学指标数据库&#xff09;是目前世界范围内普遍用以评价高校、学术机构、国家或地区国…

JavaScript 动态网页实例 —— 事件处理应用

前言 事件处理的应用很广泛。在事件处理的应用中,鼠标事件的应用是最常用到的。本章给出几个鼠标事件处理应用的示例,包括:页面预览、图像切换、点亮文本、鼠标跟随、鼠标感应和禁用鼠标按键。在这些示例中,有的可以直接拿来应用,有的则只提供了一种应用的方法,稍加拓展,…

深入解析RedisSearch:全文搜索的新维度

码到三十五 &#xff1a; 个人主页 在当今的数据时代&#xff0c;信息的检索与快速定位变得尤为关键。Redis&#xff0c;作为一个高性能的内存数据库&#xff0c;已经在缓存和消息系统中占据了重要地位。然而&#xff0c;Redis并不直接支持复杂的搜索功能。为了填补这一空白&am…

QT7_视频知识点笔记_3_自定义控件,事件处理器⭐,定时器,QPainter,绘图设备,不规则窗口

第三天&#xff1a; 自定义控件&#xff0c;事件处理器⭐&#xff0c;定时器&#xff0c;QPainter,绘图设备&#xff0c;不规则窗口实现 1.自定义控件&#xff1a; 创建新的QT控件类&#xff0c;然后再需要使用的地方--》提升为 来使用如何使用基础控件的信号和槽函数&…

Flutter-Statewidget 创建State过程State<XXXX> createState() => _XXXXState()的解释

文章目录 创建widget 的状态对象示例代码解析 完整的代码示例总结 创建widget 的状态对象 今天有个同学问了我下State createState() > _XXXXState()时什么意思。这个代码在flutter开发中一直看到&#xff0c;很多人都不关心这个&#xff0c;直接当模板使用。今天来介绍下这…

Python中tkinter编程入门3

在使用tkinter创建了窗口之后&#xff0c;可以将一些控件“放置”到窗口中。这些控件包括标签、按键以及输入框等。 1 在窗口中“放置”标签 在窗口中“放置”标签主要有两个步骤&#xff0c;一是创建标签控件&#xff0c;二是将创建好的标签“放置”到窗口上。 1.1 创建标签…

Maven- Profile详解

前言 Profile能让你为一个特殊的环境自定义一个特殊的构建&#xff1b;profile使得不同环境间构建的可移植性成为可能。 <project><profiles><profile><build><defaultGoal>...</defaultGoal><finalName>...</finalName><…