whisper使用

whisper使用

  • 1. 直接调用 语音识别
  • 2. 语种识别 whisper.detect_language()和whisper.decode()
  • 3. 指定要识别的语种做语音识别
    • **whisper 源码的transcribe函数**
  • 函数解析
    • 1. transcript.py
    • 2. tokenizer.py
    • 3. audio.py
    • 4. __ init__.py

github: https://gitcode.com/openai/whisper/overview

1. 直接调用 语音识别

,transcribe()方法会读取整个文件,并使用一个30秒的滑动窗口对音频进行处理,对每个窗口进行自回归序列到序列的预测。
官网readme调用1

import whisper

model = whisper.load_model("base")  # 加载模型
result = model.transcribe("audio.mp3")  # 指定音频路径 识别
print(result["text"])  # 输出识别结果

load_model方法在__init__.py文件中有定义

{'text': ' 你一定會笑著說 二百克芝麻能力好耐架', 'segments': [{'id': 0, 'seek': 0, 'start': 0.0, 'end': 2.0, 'text': ' 你一定會笑著說', 'tokens': [50365, 10930, 24272, 6236, 11600, 19382, 4622, 50465], 'temperature': 0.0, 'avg_logprob': -0.5130815124511718, 'compression_ratio': 0.8253968253968254, 'no_speech_prob': 0.12529681622982025}, {'id': 1, 'seek': 0, 'start': 2.0, 'end': 5.5, 'text': ' 二百克芝麻能力好耐架', 'tokens': [50465, 220, 11217, 31906, 24881, 13778, 251, 38999, 8225, 13486, 2131, 4450, 238, 7360, 114, 50640], 'temperature': 0.0, 'avg_logprob': -0.5130815124511718, 'compression_ratio': 0.8253968253968254, 'no_speech_prob': 0.12529681622982025}], 'language': 'yue'}

2. 语种识别 whisper.detect_language()和whisper.decode()

以下是使用whisper.detect_language()和whisper.decode()的示例用法,这些方法提供对模型的更低级别访问。更低级别可以说是更底层的调用。
官网readme调用2

import whisper

model = whisper.load_model("base") # 加载预训练的语音识别模型,这里使用了名为"base"的模型。

# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)  # 对加载的音频进行填充或裁剪,使其适合30秒的滑动窗口处理。

# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device) 
# 将音频转换为对数梅尔频谱图,并将其移动到与模型相同的设备(如GPU)上进行处理。

# detect the spoken language
_, probs = model.detect_language(mel) # 使用模型进行语言检测,返回检测到的语言和对应的概率。
# 打印检测到的语言,选取概率最高的语言作为结果。
print(f"Detected language: {max(probs, key=probs.get)}")

# decode the audio
# 置解码的选项,如语言模型、解码器等。
options = whisper.DecodingOptions()
# 使用模型对音频进行解码,生成识别结果。
result = whisper.decode(model, mel, options)

# print the recognized text
# 打印识别结果,即模型识别出的文本内容。
print(result.text)

3. 指定要识别的语种做语音识别

from whisper import load_model
from whisper.transcribe import transcribe
model = load_model(model_path, device=device)
# 指定model 音频路径 要识别的语言类型  yue--粤语
result = transcribe(model, audio_path, language="yue")

whisper 源码的transcribe函数

def transcribe(
    model: "Whisper",
    audio: Union[str, np.ndarray, torch.Tensor],
    *,
    verbose: Optional[bool] = None,
    temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
    compression_ratio_threshold: Optional[float] = 2.4,
    logprob_threshold: Optional[float] = -1.0,
    no_speech_threshold: Optional[float] = 0.6,
    condition_on_previous_text: bool = True,
    initial_prompt: Optional[str] = None,
    word_timestamps: bool = False,
    prepend_punctuations: str = "\"'“¿([{-",
    append_punctuations: str = "\"'.。,,!!??::”)]}、",
    clip_timestamps: Union[str, List[float]] = "0",
    hallucination_silence_threshold: Optional[float] = None,
    **decode_options,
):
    """
    Transcribe an audio file using Whisper

    Parameters
    ----------
    model: Whisper
        The Whisper model instance

    audio: Union[str, np.ndarray, torch.Tensor]
        The path to the audio file to open, or the audio waveform

    verbose: bool
        Whether to display the text being decoded to the console. If True, displays all the details,
        If False, displays minimal details. If None, does not display anything

    temperature: Union[float, Tuple[float, ...]]
        Temperature for sampling. It can be a tuple of temperatures, which will be successively used
        upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.

    compression_ratio_threshold: float
        If the gzip compression ratio is above this value, treat as failed

    logprob_threshold: float
        If the average log probability over sampled tokens is below this value, treat as failed

    no_speech_threshold: float
        If the no_speech probability is higher than this value AND the average log probability
        over sampled tokens is below `logprob_threshold`, consider the segment as silent

    condition_on_previous_text: bool
        if True, the previous output of the model is provided as a prompt for the next window;
        disabling may make the text inconsistent across windows, but the model becomes less prone to
        getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.

    word_timestamps: bool
        Extract word-level timestamps using the cross-attention pattern and dynamic time warping,
        and include the timestamps for each word in each segment.

    prepend_punctuations: str
        If word_timestamps is True, merge these punctuation symbols with the next word

    append_punctuations: str
        If word_timestamps is True, merge these punctuation symbols with the previous word

    initial_prompt: Optional[str]
        Optional text to provide as a prompt for the first window. This can be used to provide, or
        "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
        to make it more likely to predict those word correctly.

    decode_options: dict
        Keyword arguments to construct `DecodingOptions` instances

    clip_timestamps: Union[str, List[float]]
        Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process.
        The last end timestamp defaults to the end of the file.

    hallucination_silence_threshold: Optional[float]
        When word_timestamps is True, skip silent periods longer than this threshold (in seconds)
        when a possible hallucination is detected

    Returns
    -------
    A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
    the spoken language ("language"), which is detected when `decode_options["language"]` is None.
    """
    dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
    if model.device == torch.device("cpu"):
        if torch.cuda.is_available():
            warnings.warn("Performing inference on CPU when CUDA is available")
        if dtype == torch.float16:
            warnings.warn("FP16 is not supported on CPU; using FP32 instead")
            dtype = torch.float32

    if dtype == torch.float32:
        decode_options["fp16"] = False

    # Pad 30-seconds of silence to the input audio, for slicing
    mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
    content_frames = mel.shape[-1] - N_FRAMES
    content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)

    if decode_options.get("language", None) is None:
        if not model.is_multilingual:
            decode_options["language"] = "en"
        else:
            if verbose:
                print(
                    "Detecting language using up to the first 30 seconds. Use `--language` to specify the language"
                )
            mel_segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
            _, probs = model.detect_language(mel_segment)
            decode_options["language"] = max(probs, key=probs.get)
            if verbose is not None:
                print(
                    f"Detected language: {LANGUAGES[decode_options['language']].title()}"
                )

    language: str = decode_options["language"]
    task: str = decode_options.get("task", "transcribe")
    tokenizer = get_tokenizer(
        model.is_multilingual,
        num_languages=model.num_languages,
        language=language,
        task=task,
    )

    if isinstance(clip_timestamps, str):
        clip_timestamps = [
            float(ts) for ts in (clip_timestamps.split(",") if clip_timestamps else [])
        ]
    seek_points: List[int] = [round(ts * FRAMES_PER_SECOND) for ts in clip_timestamps]
    if len(seek_points) == 0:
        seek_points.append(0)
    if len(seek_points) % 2 == 1:
        seek_points.append(content_frames)
    seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))

    punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"

    if word_timestamps and task == "translate":
        warnings.warn("Word-level timestamps on translations may not be reliable.")

    def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
        temperatures = (
            [temperature] if isinstance(temperature, (int, float)) else temperature
        )
        decode_result = None

        for t in temperatures:
            kwargs = {**decode_options}
            if t > 0:
                # disable beam_size and patience when t > 0
                kwargs.pop("beam_size", None)
                kwargs.pop("patience", None)
            else:
                # disable best_of when t == 0
                kwargs.pop("best_of", None)

            options = DecodingOptions(**kwargs, temperature=t)
            decode_result = model.decode(segment, options)

            needs_fallback = False
            if (
                compression_ratio_threshold is not None
                and decode_result.compression_ratio > compression_ratio_threshold
            ):
                needs_fallback = True  # too repetitive
            if (
                logprob_threshold is not None
                and decode_result.avg_logprob < logprob_threshold
            ):
                needs_fallback = True  # average log probability is too low
            if (
                no_speech_threshold is not None
                and decode_result.no_speech_prob > no_speech_threshold
            ):
                needs_fallback = False  # silence
            if not needs_fallback:
                break

        return decode_result

    clip_idx = 0
    seek = seek_clips[clip_idx][0]
    input_stride = exact_div(
        N_FRAMES, model.dims.n_audio_ctx
    )  # mel frames per output token: 2
    time_precision = (
        input_stride * HOP_LENGTH / SAMPLE_RATE
    )  # time per output token: 0.02 (seconds)
    all_tokens = []
    all_segments = []
    prompt_reset_since = 0

    if initial_prompt is not None:
        initial_prompt_tokens = tokenizer.encode(" " + initial_prompt.strip())
        all_tokens.extend(initial_prompt_tokens)
    else:
        initial_prompt_tokens = []

    def new_segment(
        *, start: float, end: float, tokens: torch.Tensor, result: DecodingResult
    ):
        tokens = tokens.tolist()
        text_tokens = [token for token in tokens if token < tokenizer.eot]
        return {
            "seek": seek,
            "start": start,
            "end": end,
            "text": tokenizer.decode(text_tokens),
            "tokens": tokens,
            "temperature": result.temperature,
            "avg_logprob": result.avg_logprob,
            "compression_ratio": result.compression_ratio,
            "no_speech_prob": result.no_speech_prob,
        }

    # show the progress bar when verbose is False (if True, transcribed text will be printed)
    with tqdm.tqdm(
        total=content_frames, unit="frames", disable=verbose is not False
    ) as pbar:
        last_speech_timestamp = 0.0
        # NOTE: This loop is obscurely flattened to make the diff readable.
        # A later commit should turn this into a simpler nested loop.
        # for seek_clip_start, seek_clip_end in seek_clips:
        #     while seek < seek_clip_end
        while clip_idx < len(seek_clips):
            seek_clip_start, seek_clip_end = seek_clips[clip_idx]
            if seek < seek_clip_start:
                seek = seek_clip_start
            if seek >= seek_clip_end:
                clip_idx += 1
                if clip_idx < len(seek_clips):
                    seek = seek_clips[clip_idx][0]
                continue
            time_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
            window_end_time = float((seek + N_FRAMES) * HOP_LENGTH / SAMPLE_RATE)
            segment_size = min(N_FRAMES, content_frames - seek, seek_clip_end - seek)
            mel_segment = mel[:, seek : seek + segment_size]
            segment_duration = segment_size * HOP_LENGTH / SAMPLE_RATE
            mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(model.device).to(dtype)

            decode_options["prompt"] = all_tokens[prompt_reset_since:]
            result: DecodingResult = decode_with_fallback(mel_segment)
            tokens = torch.tensor(result.tokens)

            if no_speech_threshold is not None:
                # no voice activity check
                should_skip = result.no_speech_prob > no_speech_threshold
                if (
                    logprob_threshold is not None
                    and result.avg_logprob > logprob_threshold
                ):
                    # don't skip if the logprob is high enough, despite the no_speech_prob
                    should_skip = False

                if should_skip:
                    seek += segment_size  # fast-forward to the next segment boundary
                    continue

            previous_seek = seek
            current_segments = []

            # anomalous words are very long/short/improbable
            def word_anomaly_score(word: dict) -> float:
                probability = word.get("probability", 0.0)
                duration = word["end"] - word["start"]
                score = 0.0
                if probability < 0.15:
                    score += 1.0
                if duration < 0.133:
                    score += (0.133 - duration) * 15
                if duration > 2.0:
                    score += duration - 2.0
                return score

            def is_segment_anomaly(segment: Optional[dict]) -> bool:
                if segment is None or not segment["words"]:
                    return False
                words = [w for w in segment["words"] if w["word"] not in punctuation]
                words = words[:8]
                score = sum(word_anomaly_score(w) for w in words)
                return score >= 3 or score + 0.01 >= len(words)

            def next_words_segment(segments: List[dict]) -> Optional[dict]:
                return next((s for s in segments if s["words"]), None)

            timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
            single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]

            consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
            consecutive.add_(1)
            if len(consecutive) > 0:
                # if the output contains two consecutive timestamp tokens
                slices = consecutive.tolist()
                if single_timestamp_ending:
                    slices.append(len(tokens))

                last_slice = 0
                for current_slice in slices:
                    sliced_tokens = tokens[last_slice:current_slice]
                    start_timestamp_pos = (
                        sliced_tokens[0].item() - tokenizer.timestamp_begin
                    )
                    end_timestamp_pos = (
                        sliced_tokens[-1].item() - tokenizer.timestamp_begin
                    )
                    current_segments.append(
                        new_segment(
                            start=time_offset + start_timestamp_pos * time_precision,
                            end=time_offset + end_timestamp_pos * time_precision,
                            tokens=sliced_tokens,
                            result=result,
                        )
                    )
                    last_slice = current_slice

                if single_timestamp_ending:
                    # single timestamp at the end means no speech after the last timestamp.
                    seek += segment_size
                else:
                    # otherwise, ignore the unfinished segment and seek to the last timestamp
                    last_timestamp_pos = (
                        tokens[last_slice - 1].item() - tokenizer.timestamp_begin
                    )
                    seek += last_timestamp_pos * input_stride
            else:
                duration = segment_duration
                timestamps = tokens[timestamp_tokens.nonzero().flatten()]
                if (
                    len(timestamps) > 0
                    and timestamps[-1].item() != tokenizer.timestamp_begin
                ):
                    # no consecutive timestamps but it has a timestamp; use the last one.
                    last_timestamp_pos = (
                        timestamps[-1].item() - tokenizer.timestamp_begin
                    )
                    duration = last_timestamp_pos * time_precision

                current_segments.append(
                    new_segment(
                        start=time_offset,
                        end=time_offset + duration,
                        tokens=tokens,
                        result=result,
                    )
                )
                seek += segment_size

            if word_timestamps:
                add_word_timestamps(
                    segments=current_segments,
                    model=model,
                    tokenizer=tokenizer,
                    mel=mel_segment,
                    num_frames=segment_size,
                    prepend_punctuations=prepend_punctuations,
                    append_punctuations=append_punctuations,
                    last_speech_timestamp=last_speech_timestamp,
                )

                if not single_timestamp_ending:
                    last_word_end = get_end(current_segments)
                    if last_word_end is not None and last_word_end > time_offset:
                        seek = round(last_word_end * FRAMES_PER_SECOND)

                # skip silence before possible hallucinations
                if hallucination_silence_threshold is not None:
                    threshold = hallucination_silence_threshold
                    if not single_timestamp_ending:
                        last_word_end = get_end(current_segments)
                        if last_word_end is not None and last_word_end > time_offset:
                            remaining_duration = window_end_time - last_word_end
                            if remaining_duration > threshold:
                                seek = round(last_word_end * FRAMES_PER_SECOND)
                            else:
                                seek = previous_seek + segment_size

                    # if first segment might be a hallucination, skip leading silence
                    first_segment = next_words_segment(current_segments)
                    if first_segment is not None and is_segment_anomaly(first_segment):
                        gap = first_segment["start"] - time_offset
                        if gap > threshold:
                            seek = previous_seek + round(gap * FRAMES_PER_SECOND)
                            continue

                    # skip silence before any possible hallucination that is surrounded
                    # by silence or more hallucinations
                    hal_last_end = last_speech_timestamp
                    for si in range(len(current_segments)):
                        segment = current_segments[si]
                        if not segment["words"]:
                            continue
                        if is_segment_anomaly(segment):
                            next_segment = next_words_segment(
                                current_segments[si + 1 :]
                            )
                            if next_segment is not None:
                                hal_next_start = next_segment["words"][0]["start"]
                            else:
                                hal_next_start = time_offset + segment_duration
                            silence_before = (
                                segment["start"] - hal_last_end > threshold
                                or segment["start"] < threshold
                                or segment["start"] - time_offset < 2.0
                            )
                            silence_after = (
                                hal_next_start - segment["end"] > threshold
                                or is_segment_anomaly(next_segment)
                                or window_end_time - segment["end"] < 2.0
                            )
                            if silence_before and silence_after:
                                seek = round(
                                    max(time_offset + 1, segment["start"])
                                    * FRAMES_PER_SECOND
                                )
                                if content_duration - segment["end"] < threshold:
                                    seek = content_frames
                                current_segments[si:] = []
                                break
                        hal_last_end = segment["end"]

                last_word_end = get_end(current_segments)
                if last_word_end is not None:
                    last_speech_timestamp = last_word_end

            if verbose:
                for segment in current_segments:
                    start, end, text = segment["start"], segment["end"], segment["text"]
                    line = f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"
                    print(make_safe(line))

            # if a segment is instantaneous or does not contain text, clear it
            for i, segment in enumerate(current_segments):
                if segment["start"] == segment["end"] or segment["text"].strip() == "":
                    segment["text"] = ""
                    segment["tokens"] = []
                    segment["words"] = []

            all_segments.extend(
                [
                    {"id": i, **segment}
                    for i, segment in enumerate(
                        current_segments, start=len(all_segments)
                    )
                ]
            )
            all_tokens.extend(
                [token for segment in current_segments for token in segment["tokens"]]
            )

            if not condition_on_previous_text or result.temperature > 0.5:
                # do not feed the prompt tokens if a high temperature was used
                prompt_reset_since = len(all_tokens)

            # update progress bar
            pbar.update(min(content_frames, seek) - previous_seek)

    return dict(
        text=tokenizer.decode(all_tokens[len(initial_prompt_tokens) :]),
        segments=all_segments,
        language=language,
    )

函数解析

1. transcript.py

kimichat:
这段代码是一个Python脚本,它使用了Whisper模型来进行音频转录。Whisper是一个由OpenAI开发的大型语音识别模型,能够处理多种语言和任务。以下是代码的主要功能和组件的逐行解释:

1-7行:导入了所需的库和模块,包括argparse(命令行参数解析)、os(操作系统交互)、traceback(错误跟踪)、warnings(警告信息)、numpy(科学计算)、torch(PyTorch深度学习库)、tqdm(进度条显示)。

9-14行:定义了一些常量和辅助函数,如FRAMES_PER_SECOND(每秒帧数)、HOP_LENGTH(帧跳跃长度)、N_FRAMES(每个音频段的帧数)、N_SAMPLES(音频样本数)、SAMPLE_RATE(采样率)等。

16-25行:定义了log_mel_spectrogram函数,用于将音频信号转换为Mel频率倒谱系数,这是语音识别中常用的特征表示方法。

27-36行:定义了pad_or_trim函数,用于对音频信号进行填充或裁剪,以匹配模型所需的输入长度。

38-55行:定义了transcribe函数,它是脚本的核心,负责加载音频、预处理、使用Whisper模型进行转录,并返回转录结果。它接受多种参数,如verbose(是否显示详细信息)、temperature(采样温度)、compression_ratio_threshold(压缩比阈值)等,这些参数影响转录过程和结果。
57-82行:在transcribe函数中,首先检查设备类型和数据类型(是否使用半精度浮点数),然后对音频进行预处理,包括检测语言、加载tokenizer、处理音频剪辑时间戳等。
84-131行:实现了一个循环,用于处理音频文件的每个剪辑段,进行转录,并更新进度条。
133-174行:在transcribe函数中,还实现了对转录结果的处理,包括添加单词时间戳、处理可能的幻觉(hallucination)和沉默段。

176-198行:定义了cli函数,它使用argparse解析命令行参数,并调用transcribe函数来处理音频文件。

200-206行:在cli函数中,根据用户输入的参数,加载了Whisper模型,并设置了输出格式和目录。

208-213行:实现了对每个音频文件的循环处理,调用transcribe函数进行转录,并将结果写入到文件中。

215-218行:最后,如果这个脚本作为主程序运行,它将执行cli函数,开始命令行界面。

整体来看,这个脚本提供了一个完整的命令行界面,允许用户指定音频文件、模型、输出格式和其他参数,以执行音频转录任务。它使用了Whisper模型的强大功能,能够处理多种语言和语音识别任务。

2. tokenizer.py

根据缩写指定要识别的语言
在这里插入图片描述

3. audio.py

处理音频用到了ffmpeg命令行工具,在运行环境要安装上ffmpeg命令行工具。
在这里插入图片描述

4. __ init__.py

指定要调用的模型, 可以把模型先下载到本地,直接指定模型路径加载本地模型。
grep -H “example” * 匹配内容的同时输出被匹配的文件名。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/610374.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

原来pip是有默认路径的。

今天一直报错&#xff1a; bash: /root/data1/anaconda3/envs/li_3_10/bin/pip: /root/lsc/anaconda3/envs/li_3_10/bin/python: bad interpreter: No such file or directory 原来是root/data1/anaconda3/envs/li_3_10/bin/pip: 这个位置的pip 自身带默认路径&#xff0c;然…

Certbot免费证书的安装,使用,自动续期

首先你得先确认你得linux是那个操作系统&#xff0c;可以用这几个命令试一下。两个都可以试试 cat /etc/os-releaseuname -a然后看是Certbot得安装&#xff1a; CentOS: yum update yum install certbot -y Debian&#xff1a; apt update apt install certbot -y 有的云…

【文化课学习笔记】【物理】功与能

【物理】功与能 功 基础概念 定义 一个物体在力的作用下&#xff0c;沿力的方向&#xff0c;通过一段距离(位移)&#xff0c;则称这个力做了功。 公式 功的定义式&#xff1a; \[W Fx \] 这里的 \(x\) 指的是物体沿力的方向上发生的位移。由于力 \(F\) 和位移 \(x\) 都是矢量&…

【回溯算法】【Python实现】符号三角形问题

文章目录 [toc]问题描述回溯法时间复杂性Python实现 问题描述 下图是由 14 14 14个“ ”和 14 14 14个“ − - −”组成的符号三角形&#xff0c; 2 2 2个同号下面都是” “&#xff0c; 2 2 2个异号下面都是“ − - −” 在一般情况下&#xff0c;符号三角形的第一行有 n…

前端 怎么让聊天列表在第一次渲染的时候自动定位到最新位置

常见的定位到聊天最新位置一般是&#xff0c;正常渲染之后&#xff0c;使用scrollIntoView或者scrollTo去处理。 今天分享另外一种方法 <!DOCTYPE html> <html lang"en"><head><meta charset"utf-8" /><title>Demo</ti…

记录minio的bug(Object name contains unsupported characters.)

场景是我将后端服务从121.xxx.xxx.xxx服务器上转移到了另一台服务器10.xxx.xxx.xxx 但图片都还在121.xxx.xxx.xxx服务器上&#xff0c;同样我10.xxx.xxx.xxx也安装了minio并且我的后端服务配置的minio地址也是10.xxx.xxx.xxx 此时有一个业务通过minio客户端获取图片&#xf…

Codeforces Round 217 (Div. 2) A. Rook, Bishop and King(BFS)

Rook, Bishop and King 题面翻译 【题目描述】 佩蒂亚正在学习国际象棋。他已经学会如何移动王、车和象。让我们提示你如何移动国象棋子。棋盘有 64 64 64个棋格&#xff0c;呈 8 8 8\times8 88正方形。一个格子可以用 ( r , c ) (r,c) (r,c)来表示—— r r r指行&#xff…

C++与java回调函数用法区别实例(二百七十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【一起深度学习——NIN】

NIN神经网络 原理图&#xff1a;代码实现&#xff1a;输出结果&#xff1a; 原理图&#xff1a; 代码实现&#xff1a; import torch from torch import nn from d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.…

Linux的命令

&#xff1b; 昨天学习了七个命令&#xff0c;分别是&#xff1a;cd命令&#xff08;切换目录&#xff09;、pwd命令&#xff08;当前目录&#xff09;、mkdir命令&#xff08;创建目录&#xff09;、touch命令&#xff08;创建文件&#xff09;、date命令&#xff08;显…

weditor安装的时候产生的问题

先放出来github的地址https://github.com/alibaba/web-editor&#xff0c;这个上面给了两种安装方式一种是&#xff1a; pip3 install -U weditor 这种方式会报错误&#xff0c; 具体原因我也不知道。那就采用第二种方式 git clone https://github.com/openatx/weditor pip3…

JS执行原理大揭秘:事件循环Event Loop与宏任务、微任务

前言 &#x1f4eb; 大家好&#xff0c;我是南木元元&#xff0c;热爱技术和分享&#xff0c;欢迎大家交流&#xff0c;一起学习进步&#xff01; &#x1f345; 个人主页&#xff1a;南木元元 目录 事件循环概述 异步和单线程 同步任务 异步任务 任务队列 宏任务 微任务…

海云安受邀参加诸子云 4.27南京「金融互联网」私董会

4月27日&#xff0c;“安在新媒体网安用户行业活动”第四期私董会在南京顺利举办。活动以“金融&互联网”为主题&#xff0c;邀请十余位业内资深的甲方用户以及典型厂商代表。摒弃传统的议题分享&#xff0c;采取“随时问答&#xff0c;自由讨论”的形式&#xff0c;提问题…

在做题中学习(57):寻找数组的中心下标

724. 寻找数组的中心下标 - 力扣&#xff08;LeetCode&#xff09; 解法&#xff1a;前缀和后缀和 思路&#xff1a;要看一个数是不是中心下标&#xff0c;就看他前面数的和 与 后面数的和 相不相等。 1.i前面数的和&#xff0c;是[0,i-1] 的前缀和&#xff0c;i后面数的和&am…

LeetCode746:使用最小花费爬楼梯

题目描述 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 代码 …

323_C++_QT_QProcess执行cmd解压、压缩、删除tar.gz等等其他压缩包文件到指定目录,不需要外部库,QT自带API的就行

// decompressPath : 解压到此目录 // fileName : 解压的tar.gz文件名executeCommand(decompressPath , QString::fromStdString(fileName));// 开始解压 void executeCommand

视频剪辑一键处理技巧:批量分割视频,快速提取m3u8视频

随着网络视频的普及和多样化&#xff0c;视频剪辑和处理成为了很多用户的基本需求。在众多的视频处理技巧中&#xff0c;批量分割视频快速提取m3u8视频是常见的操作。本文将介绍如何利用云炫AI智剪一键处理的技巧&#xff0c;轻松完成这些任务&#xff0c;提高视频剪辑的效率。…

提高岩土工程安全的关键:锚索测力计的应用

岩土工程是土木工程中的一个重要分支&#xff0c;涉及到基础建设、坡面稳定、隧道建设等多个领域。这些工程的安全性对人们的生活和财产安全至关重要。在众多技术和工具中&#xff0c;锚索测力计的应用在提高岩土工程的安全性方面发挥了不可替代的作用。 点击输入图片描述&…

AXI4写时序在AXI Block RAM (BRAM) IP核中的应用

在本文中将展示描述了AXI从设备&#xff08;slave&#xff09;AXI BRAM Controller IP核与Xilinx AXI Interconnect之间的写时序关系。 1 Single Write 图1是一个关于32位宽度的BRAM&#xff08;Block RAM&#xff09;的单次写入操作的例子。这个例子展示了如何向地址0x1000h…

[ 视频号]代替用户发布视频api

使用接口&#xff0c;替代用户使用设备直接发布视频api 接口地址&#xff1a; http://接口地址/api/v2 先调用登录接口&#xff0c;进行账号登录 登录二维码接口入参&#xff1a; {"appId": "","proxyIp": "","regionId"…