私域流量优化:如何利用 AIPL 模型洞察客户生命周期价值

在当今这个数字化时代,商业战场的硝烟从未如此浓烈。随着互联网红利的逐渐消退,公域流量的成本水涨船高,企业间对于有限用户资源的争夺已进入白热化阶段。每一次点击、每一个曝光背后,都是企业不得不承担的高昂代价。在此背景下,传统的依赖公域流量获取新客的模式正遭受前所未有的挑战,迫使企业不得不重新审视其营销策略,探索更为经济高效、可持续发展的顾客关系构建之道。

因此,将公域流量有效转化为私域流量,构建属于自己的用户池,成为了众多企业突破重围、在激烈竞争中寻求新增长点的必然选择。这不仅是对市场环境变化的主动适应,更是企业深化用户理解、提升顾客终身价值、强化品牌忠诚度的核心策略。

在之前的文章中我们针对 APMDR 模型做过专门的模型介绍,但这个模型并未聚焦在私域流量的运营上。本文我们将深入探讨一个在私域流量场景下使用频率更高的生命周期模型——AIPL 模型,通过采用这种用户生命周期管理模型,企业可以更高效地将公域流量转化为私域流量,从而提升市场竞争力。

什么是 AIPL 模型?

AIPL 模型是数字营销领域常用的一种用户生命周期管理模型,全称为 Awareness(认知)、Interest(兴趣)、Purchase(购买)、Loyalty(忠诚)。这个模型用于帮助企业深入分析并有效管理用户从初次接触品牌,经历认知、兴趣、购买到最终成为忠实粉丝的整个生命周期。

file

● Awareness(认知)

这是用户旅程的第一步,目标是让潜在客户首次认识并注意到品牌。在这个阶段,企业通过广告、社交媒体、内容营销等手段提高品牌知名度,让用户知道品牌的存在及其所能提供的价值。

● Interest(兴趣)

当用户对品牌产生了初步的认知后,下一步是激发他们的兴趣。通过提供有价值的内容、产品信息、试用体验或互动活动,使用户深入了解品牌和产品,促使他们从旁观者转变为积极参与者。

● Purchase(购买)

在兴趣阶段的基础上,企业通过促销、优惠券、个性化推荐等策略,鼓励用户完成首次购买。这一阶段是用户价值实现的关键步骤,标志着从潜在客户转变为实际消费者的转变。

● Loyalty(忠诚)

购买后的用户管理尤为重要,目标是通过优质的客户服务、售后支持、会员计划、个性化体验等,增强用户的满意度和忠诚度,促使他们重复购买,并可能成为品牌的倡导者,通过口碑推荐带动新用户的增长。

在客户数据洞察平台中落地 AIPL 模型

了解了 AIPL 模型的阶段划分以及不同阶段的用户定位后,我们接下来以用户在某电商品牌小程序购物为例,介绍一下 AIPL 模型在业务上的应用及其在袋鼠云客户数据洞察平台中的落地。

业务场景准备

小程序品牌购物场景下,用户生命周期各阶段代表行为可以总结为如下几点:

file

基于上述场景需要为用户建立如下标签体系并生成模型:

file

每一个用户在当前阶段仅会存在一个生命周期阶段,同时命中多个条件时认为用户在后置的生命周期阶段中。即:若用户同时满足 A、I、P 的条件,则用户当前处于生命周期 P 阶段。

在客户数据洞察平台配置 AIPL 模型

确定好了业务定义后,即可将定义中所需标签在「客户数据洞察平台」中配置并发布。标签配置逻辑之前的文章有讲到过,此处不再赘述,感兴趣的朋友可以翻看之前的文章进行了解:理论+实操|一文掌握 RFM 模型在客户数据洞察平台内的落地实战

准备好了基础数据后,即可前往「客户模型」模块进行 AIPL 模型配置与应用。

● 第一步:创建 AIPL 模型

平台内置了一种客户价值模型和三种生命周期模型,根据我们当前需要,选择生命周期模型中的 AIPL 模型。

file

● 第二步:基于之前定义的阶段条件进行模型规则配置

· 认知阶段规则定义

file

· 兴趣阶段规则定义

file

· 购买阶段规则定义

file

· 忠诚阶段规则定义

file

配置完成后,可通过「预估人数」功能预计算各阶段人群覆盖情况。

file

● 第三步:更新模型数据,便于后续做模型分析

创建模型并生成模型数据后,即可定期追踪用户各阶段分布情况。

file

此外,可以指定特定的两天,查看这段时间用户阶段变化情况。

file

例如,从下图中的数据流转可看出,4月24日有3个客户从认知阶段流入兴趣阶段;4个客户从兴趣阶段流入购买阶段;分别有1个认知阶段、1个购买阶段的用户流入忠诚阶段,且流入客户量新增了133%。

file

基于该数据可以进一步分析这批用户流入的特殊性,以此挖掘营销策略,提升其他客户的流转意愿与速度。从图中可以看出目前尚无用户流失情况出现,是一个好的表现。

总结

对于企业和营销人员来说,使用 AIPL 模型对用户做阶段划分,可以帮助企业和营销人员全面理解用户从最初接触到成为忠诚客户的整个过程,使营销策略的制定更为科学和系统化。

而将用户阶段划分与数据追踪落地到「客户数据洞察平台」,则为企业提供了数据支持下的决策依据,帮助优化营销活动,减少盲目性,提升决策的科学性和准确性。同时,基于数据的实时追踪,使品牌人群资产得以量化,便于追踪营销活动的效果,评估用户在不同阶段的转化率,及时调整策略,优化整体营销绩效。

通过「客户数据洞察平台」及时追踪用户生命周期及其价值,可以进一步实现在每个阶段的精细化运营,延长用户的生命周期,增加用户的价值贡献,提高用户复购率和口碑传播,最终实现用户终身价值(CLV)的最大化。

《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057?src=szsm

《数栈产品白皮书》下载地址:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szcsdn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/609889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Web】CTFSHOW月饼杯 题解(全)

目录 web1_此夜圆 web2_故人心 web3_莫负婵娟 web1_此夜圆 拿到源码&#xff0c;一眼字符串逃逸 本地测一测&#xff0c;成功弹出计算器 <?phpclass a {public $uname;public $password;public function __wakeup(){system(calc);} }function filter($string){retur…

报名 | AIGC技术分享峰会苏州场来啦!

IGC是近年来人工智能技术迅速发展的一个重要领域。从早期的简单字符生成到现在可以撰写复杂文章、生成高清图片甚至编写代码&#xff0c;AIGC技术的发展突飞猛进&#xff0c;不仅在文学创作、艺术设计、游戏开发和软件编程等领域展现出惊人的潜能&#xff0c;也对各行业提供了前…

项目管理在软件工程中的实践方法

软件工程是一个复杂的过程&#xff0c;涉及到需求分析、设计、编码、测试和维护等多个阶段。有效的项目管理对于确保软件项目成功至关重要。以下是结合附件内容&#xff0c;关于项目管理在软件工程中实践的一些方法。 1. 明确项目愿景和目标 在项目启动之初&#xff0c;项目经…

SpringBoot+logback实现日志记录写入文件

前言 在实际的开发过程中&#xff0c;日志记录有着极其重要的作用&#xff0c;它帮助我们实现更高效的故障排查与调试、更及时的监控和性能优化、更全面的业务分析与决策支持…那么我们如何在SpringBoot项目中实现日志的个性化定制&#xff0c;以满足其他特殊需求呢&#xff1f…

2024年5月6日优雅草蜻蜓API大数据服务中心v2.0.3更新

v2.0.3更新 2024年5月6日优雅草蜻蜓API大数据服务中心v2.0.3更新-修复改版后搜索框漏掉的bug-增加搜索框 提示&#xff1a;优雅草大数据中心已经 上线137天 稳定运行 1181555 次 累积调用 目前大数据中心用户呈现增长趋势&#xff0c;目标2024年11月底突破1亿次调用&#xf…

大语言模型的后处理

后处理的输入 常规意义上的大模型处理流程 import torch from transformers import LlamaForCausalLM, LlamaTokenizer# 加载模型和tokenizer model LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf") tokenizer LlamaTokenizer.from_pretrain…

这个 TypeScript 技巧会让你大吃一惊

从字符串数组中提取自定义类型 “在 TypeScript 的世界里&#xff0c;自定义类型从字符串数组中显现&#xff0c;就像隐藏的宝石。” TypeScript 是一个操纵现有数据和发展良好实践的神奇工具。 今天&#xff0c;我们将探索如何以正确的方式从字符串数组中提取全名&#xff0c…

MPAndroidChart 详细使用 - BarChart

chart下面的方法 getDescription().setEnabled(boolean enabled);//设置描述是否显示 setPinchZoom(boolean enabled);//设置x轴和y轴能否同时缩放。默认是否 setScaleEnabled(boolean enabled);//是否支持缩放 setScaleXEnabled(boolean enabled);//启用/禁用x轴上的缩放 setS…

Vue2中子组件调用父组件的方法,父组件调用子组件的方法,父子组件互相传值和方法调用

&#x1f49f; 上一篇文章 组件之间的多种通信方式&#xff0c;一文彻底搞懂组件通信&#xff01;​​​​​​​ &#x1f4dd; 系列专栏 vue从基础到起飞 目录 一、父组件调用子组件的方法 二、子组件调用父组件的方法 1、使用this.$emit()向父组件触发一个事件,父组件监听…

HTTPS 原理和 TLS 握手机制

HTTPS的概述与重要性 在当今数字化时代&#xff0c;网络安全问题日益凸显&#xff0c;数据在传输过程中的安全性备受关注。HTTPS 作为一种重要的网络通信协议&#xff0c;为数据的传输提供了强有力的安全保障。它是在 HTTP 的基础上发展而来&#xff0c;通过引入数据加密机制&a…

RazorSQL for Mac:强大而全面的数据库管理工具

RazorSQL for Mac是一款功能强大、操作简便的数据库管理工具。它专为Mac用户设计&#xff0c;支持连接超过30种不同类型的数据库&#xff0c;包括MySQL、Oracle、PostgreSQL等&#xff0c;为用户提供了全面的数据库管理解决方案。 RazorSQL具有强大的数据库浏览功能&#xff0c…

【吃透Java手写】3-SpringBoot-简易版-源码解析

【吃透Java手写】SpringBoot-简易版-源码解析 1 SpringbootDemo2 准备工作2.1 Springboot-my2.1.1 依赖2.1.2 SpringBootApplication2.1.3 SJBSpringApplication2.1.3.1 run方法 2.2 Springboot-user2.2.1 依赖2.2.2 UserController2.2.3 UserApplication 2.3 分析run方法的逻辑…

图神经网络(GNNs)在时间序列分析中的应用

时间序列数据是记录动态系统测量的主要数据类型&#xff0c;由物理传感器和在线过程&#xff08;虚拟传感器&#xff09;大量生成。时间序列分析对于解锁可用数据中隐含的丰富信息至关重要。随着图神经网络&#xff08;GNNs&#xff09;的最近进展&#xff0c;基于GNN的方法在时…

5月10日学习记录

[NCTF2019]True XML cookbook(xxe漏洞利用) 这题是关于xxe漏洞的实际应用&#xff0c;利用xxe漏洞的外部实体来进行ssrf探针内网的主机 和[NCTF2019]Fake XML cookbook的区别就在于xxe漏洞的利用方向&#xff0c;一个是命令执行&#xff0c;一个是SSRF 看题&#xff0c;打开…

JavaScript原理篇——Promise原理及笔试题实战演练

Promise 是 JavaScript 中用于处理异步操作的对象&#xff0c;它代表了一个可能还没有完成的操作的最终完成或失败&#xff0c;以及其结果值。Promise 对象有三种状态&#xff1a; Pending&#xff08;进行中&#xff09;&#xff1a;初始状态&#xff0c;既不是成功&#xff0…

语言基础 /CC++ 可变参函数设计与实践,va_ 系列实战详解(强制参数和变参数的参数类型陷阱)

文章目录 概述va_ 系列定义va_list 类型va_start 宏从变参函数的强制参数谈起宏 va_start 对 char 和 short 类型编译告警宏 va_start 源码分析猜测 __va_start 函数实现 va_arg 宏宏 va_arg 无法接受 char 和 short为啥va_arg可解析int却不能解析float类型&#xff1f;宏 va_a…

Mybatis之ResultMap

前言 select语句查询得到的结果集是一张二维表&#xff0c;水平方向上看是一个个字段&#xff0c;垂直方向上看是一条条记录。而Java是面向对象的程序设计语言&#xff0c;对象是根据类定义创建的&#xff0c;类之间的引用关 系可以认为是嵌套的结构。在JDBC编程中&#xff0c…

PyTorch中定义自己的数据集

文章目录 1. 简介2. 查看PyTorch自带的数据集(可视化)3. 准备材料3.1 图片数据3.2 标签数据 4. 方法 1. 简介 尽管PyTorch提供了许多自带的数据集&#xff0c;如MNIST、CIFAR-10、ImageNet等&#xff0c;但它们对于没有经验的用户来说&#xff0c;理解数据加载器的工作原理以及…

【数据结构】栈的实现以及数组和链表的优缺点

个人主页&#xff1a;一代… 个人专栏&#xff1a;数据结构 1.栈 1.1栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进…

批量自定义重命名,一键添加顺序编号,文件夹管理更高效!

我们经常需要对文件夹进行管理和整理。然而&#xff0c;当面对大量需要改名的文件夹时&#xff0c;手动逐个修改不仅效率低下&#xff0c;还容易出错。那么&#xff0c;有没有一种方法能够批量自定义重命名文件夹&#xff0c;并在名称后自动添加顺序编号呢&#xff1f;答案是肯…