利用OpenCV实现图像拼接

一、介绍

     图像拼接.

二、分步实现

     要实现图像拼接,简单来说有以下几步:

  1. 对每幅图进行特征点提取
  2. 对对特征点进行匹配
  3. 进行图像配准
  4. 把图像拷贝到另一幅图像的特定位置
  5. 对重叠边界进行特殊处理

     PS:需要使用低版本的opencv,否则无法使用特征角点提取算子。

#include "highgui/highgui.hpp"    
#include "opencv2/nonfree/nonfree.hpp"    
#include "opencv2/legacy/legacy.hpp"   
#include <iostream>  

using namespace cv;
using namespace std;

typedef struct
{
    Point2f left_top;
    Point2f left_bottom;
    Point2f right_top;
    Point2f right_bottom;
}four_corners_t;

four_corners_t corners;

void CalcCorners(const Mat& H, const Mat& src)
{
    // 左上角(0, 0, 1)
    double v2[3] = { 0, 0, 1 };
    double v1[3] = { 0 };
    Mat V2 = Mat(3, 1, CV_64FC1, v2);
    Mat V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.left_top.x = v1[0] / v1[2];
    corners.left_top.y = v1[1] / v1[2];

    // 左下角(0, src.rows, 1)
    v2[0] = 0;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.left_bottom.x = v1[0] / v1[2];
    corners.left_bottom.y = v1[1] / v1[2];

    // 右上角(src.cols, 0, 1)
    v2[0] = src.cols;
    v2[1] = 0;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.right_top.x = v1[0] / v1[2];
    corners.right_top.y = v1[1] / v1[2];

    // 右下角(src.cols, src.rows, 1)
    v2[0] = src.cols;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.right_bottom.x = v1[0] / v1[2];
    corners.right_bottom.y = v1[1] / v1[2];
}

void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
    int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  

    double processWidth = img1.cols - start; // 重叠区域的宽度  
    int rows = dst.rows;
    int cols = img1.cols; // 注意,是列数*通道数
    double alpha = 1; // img1中像素的权重  
    for (int i = 0; i < rows; i++)
    {
        uchar* p = img1.ptr<uchar>(i);  // 获取第i行的首地址
        uchar* t = trans.ptr<uchar>(i);
        uchar* d = dst.ptr<uchar>(i);
        for (int j = start; j < cols; j++)
        {
            // 如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
            if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
            {
                alpha = 1;
            }
            else
            {
                // img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
                alpha = (processWidth - (j - start)) / processWidth;
            }
            d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
            d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
            d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);

        }
    }
}

int main(int argc, char* argv[])
{
    Mat image01 = imread("image2.png", 1); //右图
    Mat image02 = imread("image1.png", 1); //左图
    imshow("p2", image01);
    imshow("p1", image02);

    // 灰度图转换  
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    // 提取特征点
    SurfFeatureDetector Detector(2000);
    vector<KeyPoint> keyPoint1, keyPoint2;
    Detector.detect(image1, keyPoint1);
    Detector.detect(image2, keyPoint2);

    // 特征点描述
    SurfDescriptorExtractor Descriptor;
    Mat imageDesc1, imageDesc2;
    Descriptor.compute(image1, keyPoint1, imageDesc1);
    Descriptor.compute(image2, keyPoint2, imageDesc2);

    FlannBasedMatcher matcher;
    vector<vector<DMatch> > matchePoints;
    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();
    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe's algorithm,获取优秀匹配点
    vector<DMatch> GoodMatchePoints;
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    // draw match
    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);

    vector<Point2f> imagePoints1, imagePoints2;
    for (int i = 0; i < GoodMatchePoints.size(); i++)
    {
        imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
        imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
    }

    // 获取图像1到图像2的投影映射矩阵 尺寸为3*3  
    Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
    cout << "变换矩阵为:\n" << homo << endl << endl; // 输出映射矩阵      

   // 计算配准图的四个顶点坐标
    CalcCorners(homo, image01);
    cout << "left_top:" << corners.left_top << endl;
    cout << "left_bottom:" << corners.left_bottom << endl;
    cout << "right_top:" << corners.right_top << endl;
    cout << "right_bottom:" << corners.right_bottom << endl;

    // 图像配准  
    Mat imageTransform1, imageTransform2;
    warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
    // warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
    imshow("直接经过透视矩阵变换", imageTransform1);

    // 创建拼接后的图,需提前计算图的大小
    int dst_width = imageTransform1.cols;  // 取最右点的长度为拼接图的长度
    int dst_height = image02.rows;
    Mat dst(dst_height, dst_width, CV_8UC3);
    dst.setTo(0);

    imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
    image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
    imshow("b_dst", dst);

    // 优化拼接处
    OptimizeSeam(image02, imageTransform1, dst);
    imshow("dst", dst);

    waitKey();
    return 0;
}

  

 

三、利用stitch实现

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching.hpp"
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char* argv[])
{
	Mat img1 = imread("image1.png", cv::IMREAD_COLOR);
	Mat img2 = imread("image2.png", cv::IMREAD_COLOR);

	vector<Mat> imgs;
	imgs.push_back(img1);
	imgs.push_back(img2);

	Mat pano;
	Ptr<Stitcher> stitcher = Stitcher::create(Stitcher::PANORAMA);
	Stitcher::Status status = stitcher->stitch(imgs, pano);
	if (status != Stitcher::OK)
	{
		cout << "Can't stitch images, error code = " << int(status) << endl;
		return EXIT_FAILURE;
	}

	string result_name = "result1.jpg";
	imwrite(result_name, pano);
	cout << "stitching completed successfully\n" << result_name << " saved!";
	return EXIT_SUCCESS;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60941.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

socker套接字

1.打印错误信息 2.socketaddr_in结构体 结构体&#xff1a; &#xff08;部分库代码&#xff09; (宏中的##) 3.manual TCP: SOCK_STREAM &#xff1a; 提供有序地&#xff0c;可靠的&#xff0c;全双工的&#xff0c;基于连接的流式服务 UDP: 面向数据报

[Docker实现测试部署CI/CD----自由风格和流水线的CD操作(6)]

目录 12、自由风格的CD操作发布 V1.0.0 版本修改代码并推送GitLab 中项目打 Tag 发布 V2.0.0 版本Jenkins 配置 tag 参数添加 Git 参数添加 checkout 命令修改构建命令配置修改 SSH 配置 部署 v1.0.0重新构建工程构建结果 部署 v2.0.0重新构建工程访问 部署v3.0.0 13、流水线任…

计算机成下一个土木了吗?

前些年抓住了互联网行业的红利期&#xff0c;进入大厂的员工&#xff0c;基本可以实现在一线城市买房扎根。 但反观现在&#xff0c;“被毕业、逃离互联网、躺平算了...”却成了这个行业的主旋律&#xff0c;不少人在谈论润到国企和外企去了&#xff0c;也放低了对工资的预期&…

Java SpringBoot集成Activiti7工作流

Activiti7 Java SpringBoot集成Activiti7工作流介绍项目集成引入依赖YML配置文件配置类 启动项目生成表结构Activiti的数据库支持 Activiti数据表介绍项目Demo地址&#xff1a; Java SpringBoot集成Activiti7工作流 本文项目Demo地址附在文章后方 官网主页&#xff1a;http://a…

【C++】右值引用

文章目录 右值引用值得形式返回对象的缺陷移动语句移动赋值 右值引用 能够取地址、能够被修改的被称之为左值。 不能够取地址、不能够被修改、以及将亡值被称之为右值。 普通类型的变量&#xff0c;因为有名字&#xff0c;可以取地址&#xff0c;都认为是左值。const修饰的常量…

Flutter游戏引擎Flame系列笔记 - 1.Flame引擎概述

Flutter游戏引擎Flame系列笔记 1.Flame引擎概述 - 文章信息 - Author: 李俊才(jcLee95) Visit me at: https://jclee95.blog.csdn.netEmail: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263/article/details/132119035 【介绍】…

ThinkPHP v6.0.8 CacheStore 反序列化漏洞

漏洞说明 1. 漏洞原理&#xff1a;ThinkPHP 6.0.8 CacheStore 会触发POP利用链子&#xff0c;造成任意命令执行 2. 组件描述&#xff1a; ThinkPHP是一个免费开源的&#xff0c;快速、简单的面向对象的轻量级PHP开发框架 3. 影响版本&#xff1a;V6.0.8 漏洞复现 1. 环境安…

QtAV for ubuntu16.04

下载ubuntu https://releases.ubuntu.com/16.04/ubuntu-16.04.7-desktop-amd64.iso 下载ffmpeg https://ffmpeg.org/download.html 下载QtAV https://github.com/wang-bin/QtAV/releases 更新 sudo apt update 安装库 sudo apt-get install libglu1-mesa-dev freeglut3-dev…

解密爬虫ip是如何被识别屏蔽的

在当今信息化的时代&#xff0c;网络爬虫已经成为许多企业、学术机构和个人不可或缺的工具。然而&#xff0c;随着网站安全防护的升级&#xff0c;爬虫ip往往容易被识别并屏蔽&#xff0c;给爬虫工作增加了许多困扰。在这里&#xff0c;作为一家专业的爬虫ip供应商&#xff0c;…

K8s中的Secret

Secret作用&#xff1a;加密数据存在etcd里面&#xff0c;让pod容器以挂载Volume方式进行访问。场景&#xff1a;凭据

【经济调度】基于多目标宇宙优化算法优化人工神经网络环境经济调度研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

MySql的Windows安装指南

目录 一、MySQL的4大版本 二、软件的下载 三、MySQL8.0 版本的安装 四、配置MySQL8.0 五、配置MySQL8.0 环境变量 六、登录验证 一、MySQL的4大版本 MySQL Community Server 社区版本&#xff0c;开源免费&#xff0c;自由下载&#xff0c;但不提供官方技术支持&#xff…

5个顶级的开源有限元分析软件

每当我参加数值分析课程的教学时&#xff0c;都会回顾有限元方法的基础知识&#xff0c;很自然地就会出现使用哪种软件的问题。 以下讨论基于三个基本考虑&#xff1a; 在实际应用中&#xff0c;很少有人从头开始编写 FEM 代码。商业 FEM 软件通常在某些预定义的情况下非常易于…

EventBus 开源库学习(三)

源码细节阅读 上一节根据EventBus的使用流程把实现源码大体梳理了一遍&#xff0c;因为精力有限&#xff0c;所以看源码都是根据实现过程把基本流程看下&#xff0c;中间实现细节先忽略&#xff0c;否则越看越深不容易把握大体思路&#xff0c;这节把一些细节的部分再看看。 …

STM32的电动自行车信息采集上报系统(学习)

摘要 针对电动自行车实时监管不便的问题&#xff0c;设计了一种基于STM32的电动自行车信息采集系统&#xff0c;通过获取电池、位置和行驶状态信息并上报到服务器中&#xff0c;实现实时监管。 通过多路串口请求电池、行驶状态和位置信息&#xff0c;以并发方式进行数据接收、…

机器学习概述及其主要算法

目录 1、什么是机器学习 2、数据集 2.1、结构 3、算法分类 4、算法简介 4.1、K-近邻算法 4.2、贝叶斯分类 4.3、决策树和随机森林 4.4、逻辑回归 4.5、神经网络 4.6、线性回归 4.7、岭回归 4.8、K-means 5、机器学习开发流程 6、学习框架 1、什么是机器学习 机器…

Linux命令200例:用Look一个进行文本搜索工具

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;全栈领域新星创作者✌&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f3c6;本文已…

Web压测工具http_load原理分析

01、前言 http_load是一款测试web服务器性能的开源工具&#xff0c;从下面的网址可以下载到最新版本的http_load&#xff1a; http://www.acme.com/software/http_load/ 这个软件一直在保持着更新&#xff08;不像webbench&#xff0c;已经是十年的老古董了。 webbench的源…

Pandas

系列文章目录 第一章 python数据挖掘基础环境安装和使用 第二章 Matplotlib 第三章 Numpy 文章目录 系列文章目录一、介绍1.1 为什么用Pandas&#xff1f;1.2 核心数据结构1.3 DataFrame1.3.1 结构1.3.2 常用属性1.3.3 常用方法1.3.4 DataFrame索引的设置修改行列索引值重设索…

小白电脑装机(自用)

几个月前买了配件想自己装电脑&#xff0c;结果最后无法成功点亮&#xff0c;出现的问题是主板上的DebugLED黄灯常亮&#xff0c;即DRAM灯亮。对于微星主板的Debug灯&#xff0c;其含义这篇博文中有说明。 根据另一篇博文&#xff0c;有两种可能。 我这边曾将内存条和主板一块…