机器学习各个算法的优缺点!(上篇) 建议收藏。

下篇地址:机器学习各个算法的优缺点!(下篇) 建议收藏。-CSDN博客

今天有朋友聊起来,机器学习算法繁多,各个算法有各个算法的特点。

以及在不同场景下,不同算法模型能够发挥各自的优点。

今天呢,我把常见的、常用的算法模型进行了一个大概的总结。包括其分支以及各分支的优缺点。

涉及到的算法有:

  • 回归

  • 正则化算法

  • 集成算法

  • 决策树算法

  • 支持向量机

  • 降维算法

  • 聚类算法

  • 贝叶斯算法

  • 人工神经网络

  • 深度学习

感兴趣的朋友可以点赞、转发起来,让更多的朋友看到。

目录

1.回归

2.正则化算法

3集成算法

4决策树算法

5.支持向量机

未完待续..


1.回归

回归算法是一类用于预测连续数值输出的监督学习算法。

根据输入特征预测一个或多个目标变量。回归算法有多个分支和变种,每个分支都有其独特的优缺点。

1、线性回归(Linear Regression)

  • 优点:

    • 简单且易于解释。

    • 计算效率高,适用于大规模数据集。

    • 在特征与目标之间存在线性关系时效果良好。

  • 缺点:

    • 无法处理非线性关系。

    • 对异常值敏感。

    • 需要满足线性回归假设(如线性关系、残差正态分布等)。

2、多项式回归(Polynomial Regression)

  • 优点:

    • 可以捕捉特征和目标之间的非线性关系。

    • 相对简单实现。

  • 缺点:

    • 可能会过度拟合数据,特别是高阶多项式。

    • 需要选择适当的多项式阶数。

3、岭回归(Ridge Regression)

  • 优点:

    • 可以解决多重共线性问题。

    • 对异常值不敏感。

  • 缺点:

    • 不适用于特征选择,所有特征都会被考虑。

    • 参数需要调整。

4、Lasso回归(Lasso Regression)

  • 优点:

    • 可以用于特征选择,趋向于将不重要的特征的系数推到零。

    • 可以解决多重共线性问题。

  • 缺点:

    • 对于高维数据,可能会选择较少的特征。

    • 需要调整正则化参数。

5、弹性网络回归(Elastic Net Regression)

  • 优点:

    • 综合了岭回归和Lasso回归的优点。

    • 可以应对多重共线性和特征选择。

  • 缺点:

    • 需要调整两个正则化参数。

6、逻辑斯蒂回归(Logistic Regression)

  • 优点:

    • 用于二分类问题,广泛应用于分类任务。

    • 输出结果可以解释为概率。

  • 缺点:

    • 仅适用于二分类问题。

    • 对于复杂的非线性问题效果可能不佳。

7、决策树回归(Decision Tree Regression)

  • 优点:

    • 能够处理非线性关系。

    • 不需要对数据进行特征缩放。

    • 结果易于可视化和解释。

  • 缺点:

    • 容易过拟合。

    • 对数据中的噪声敏感。

    • 不稳定,小的数据变化可能导致不同的树结构。

8、随机森林回归(Random Forest Regression)

  • 优点:

    • 降低了决策树回归的过拟合风险。

    • 能够处理高维数据。

  • 缺点:

    • 失去了部分可解释性。

    • 难以调整模型参数。

在选择回归算法时,需要根据数据的性质以及问题的要求来决定哪种算法最适合。通常,需要进行实验和模型调优来确定最佳的回归模型。

2.正则化算法

通过在模型的损失函数中引入额外的惩罚项来限制模型参数的大小。正则化有多个分支和变种,以下是一些常见的正则化算法分支以及它们的优缺点:

1、L1 正则化(Lasso 正则化)

  • 优点

    • 可以用于特征选择,将不重要的特征的系数推到零。

    • 可以解决多重共线性问题。

  • 缺点

    • 对于高维数据,可能会选择较少的特征。

    • 需要调整正则化参数。

2、L2 正则化(岭正则化)

  • 优点

    • 可以解决多重共线性问题。

    • 对异常值不敏感。

  • 缺点

    • 不适用于特征选择,所有特征都会被考虑。

    • 参数需要调整。

3、弹性网络正则化(Elastic Net 正则化)

  • 优点

    • 综合了 L1 和 L2 正则化的优点,可以应对多重共线性和特征选择。

    • 可以调整两个正则化参数来平衡 L1 和 L2 正则化的影响。

  • 缺点

    • 需要调整两个正则化参数。

4、Dropout 正则化(用于神经网络)

  • 优点

    • 通过在训练过程中随机禁用神经元,可以减少神经网络的过拟合。

    • 不需要额外的参数调整。

  • 缺点

    • 在推断时,需要考虑丢失的神经元,增加了计算成本。

    • 可能需要更多的训练迭代。

5、贝叶斯Ridge和Lasso回归

  • 优点

    • 引入了贝叶斯思想,可以提供参数的不确定性估计。

    • 可以自动确定正则化参数。

  • 缺点

    • 计算成本较高,尤其是对于大型数据集。

    • 不适用于所有类型的问题。

6、早停法(Early Stopping)

  • 优点

    • 可以通过监测验证集上的性能来减少神经网络的过拟合。

    • 简单易用,不需要额外的参数调整。

  • 缺点

    • 需要精心选择停止训练的时机,过早停止可能导致欠拟合。

7、数据增强

  • 优点

    • 通过增加训练数据的多样性,可以降低模型的过拟合风险。

    • 适用于图像分类等领域。

  • 缺点

    • 增加了训练数据的生成和管理成本。

选择哪种正则化方法通常取决于数据的性质、问题的要求以及算法的复杂性。在实际应用中,通常需要通过实验和调参来确定最合适的正则化策略。

3集成算法

通过结合多个模型的预测,集成算法可以提高模型的性能和鲁棒性。

1、Bagging(Bootstrap Aggregating)

  • 优点

    • 降低了模型的方差,减少了过拟合风险。

    • 并行化处理,适用于大规模数据。

  • 缺点

    • 不适用于处理高度偏斜的类别分布。

    • 难以解释组合模型的预测结果。

2、随机森林(Random Forest)

  • 优点

    • 基于 Bagging,降低了方差。

    • 能够处理高维数据和大规模特征。

    • 提供特征重要性评估。

  • 缺点

    • 难以调整大量的超参数。

    • 对噪声和异常值敏感。

3、Boosting

  • 优点

    • 增强了模型的准确性。

    • 能够自动调整弱学习器的权重。

    • 适用于不平衡类别分布。

  • 缺点

    • 对噪声数据敏感。

    • 训练时间可能较长。

  • AdaBoost(自适应Boosting)

    • 优点:能够处理高维数据和大规模特征,对异常值敏感性较低。

    • 缺点:对噪声和异常值敏感。

  • Gradient Boosting(梯度提升)

    • 优点:提供了很高的预测性能,对噪声和异常值相对较稳定。

    • 缺点:需要调整多个超参数。

  • XGBoost(极端梯度提升)LightGBM(轻量级梯度提升机):都是梯度提升算法的变种,具有高效性和可扩展性。

4、Stacking

  • 优点

    • 可以组合多个不同类型的模型。

    • 提供更高的预测性能。

  • 缺点

    • 需要更多的计算资源和数据。

    • 复杂性较高,超参数的调整较困难。

5、Voting(投票)

  • 优点

    • 简单易用,易于实现。

    • 能够组合多个不同类型的模型。

  • 缺点

    • 对于弱学习器的性能要求较高。

    • 不考虑各个模型的权重。

6、深度学习集成

  • 优点

    • 可以利用神经网络模型的强大表示能力。

    • 提供了各种集成方法,如投票、堆叠等。

  • 缺点

    • 训练时间长,需要大量的计算资源。

    • 超参数调整更加复杂。

选择合适的集成算法通常取决于数据的性质、问题的要求以及计算资源的可用性。在实际应用中,通常需要进行实验和模型调优,以确定最适合特定问题的集成方法。

4决策树算法

决策树算法是一种基于树状结构的监督学习算法,用于分类和回归任务。

它通过一系列的分割来建立一个树形结构,每个内部节点表示一个特征测试,每个叶节点表示一个类别或数值输出。

1、ID3 (Iterative Dichotomiser 3)

  • 优点

    • 简单易懂,生成的树易于解释。

    • 能够处理分类任务。

  • 缺点

    • 对数值属性和缺失值的处理有限。

    • 容易过拟合,生成的树可能很深。

2、C4.5

  • 优点

    • 可以处理分类和回归任务。

    • 能够处理数值属性和缺失值。

    • 在生成树时使用信息增益进行特征选择,更健壮。

  • 缺点

    • 对噪声和异常值敏感。

    • 生成的树可能过于复杂,需要剪枝来降低过拟合风险。

3、CART (Classification and Regression Trees)

  • 优点

    • 可以处理分类和回归任务。

    • 对数值属性和缺失值有很好的支持。

    • 使用基尼不纯度或均方误差进行特征选择,更灵活。

  • 缺点

    • 生成的树可能较深,需要剪枝来避免过拟合。

4、随机森林(Random Forest)

  • 优点

    • 基于决策树,降低了决策树的过拟合风险。

    • 能够处理高维数据和大规模特征。

    • 提供特征重要性评估。

  • 缺点

    • 难以调整大量的超参数。

    • 对噪声和异常值敏感。

5、梯度提升树(Gradient Boosting Trees)

  • 优点

    • 提供了很高的预测性能,对噪声和异常值相对较稳定。

    • 适用于回归和分类任务。

    • 可以使用不同的损失函数。

  • 缺点

    • 需要调整多个超参数。

    • 训练时间可能较长。

6、XGBoost(极端梯度提升)LightGBM(轻量级梯度提升机)

  • 这些是梯度提升树的高效实现,具有高度可扩展性和性能。

7、多输出树(Multi-output Trees)

  • 优点

    • 能够处理多输出(多目标)问题。

    • 可以预测多个相关的目标变量。

  • 缺点

    • 需要大量的数据来训练有效的多输出树。

选择合适的决策树算法通常取决于数据的性质、问题的要求以及模型的复杂性。在实际应用中,通常需要通过实验和模型调优来确定最合适的决策树算法。决策树算法的优点之一是它们产生的模型易于可视化和解释。

5.支持向量机

支持向量机(Support Vector Machine,SVM)是一种强大的监督学习算法,用于分类和回归任务。

通过找到最佳的超平面来将数据分隔成不同的类别或拟合回归函数。

1、线性支持向量机

  • 优点

    • 在高维空间中有效,适用于高维数据。

    • 可以通过选择不同的核函数扩展到非线性问题。

    • 具有较强的泛化能力。

  • 缺点

    • 对大规模数据集和特征数目敏感。

    • 对噪声和异常值敏感。

2、非线性支持向量机

  • 优点

    • 可以处理非线性问题。

    • 通过选择合适的核函数,可以适应不同类型的数据。

  • 缺点

    • 对于复杂的非线性关系,可能需要选择合适的核函数和参数。

    • 计算复杂性较高,特别是对于大型数据集。

3、多类别支持向量机

  • 优点

    • 可以处理多类别分类问题。

    • 常用的方法包括一对一(One-vs-One)和一对多(One-vs-Rest)策略。

  • 缺点

    • 在一对一策略中,需要构建多个分类器。

    • 在一对多策略中,类别不平衡问题可能出现。

4、核函数支持向量机

  • 优点

    • 能够处理非线性问题。

    • 通常使用径向基函数(RBF)作为核函数。

    • 适用于复杂数据分布。

  • 缺点

    • 需要选择适当的核函数和相关参数。

    • 对于高维数据,可能存在过拟合风险。

5、稀疏支持向量机

  • 优点

    • 引入了稀疏性,只有少数支持向量对模型有贡献。

    • 可以提高模型的训练和推断速度。

  • 缺点

    • 不适用于所有类型的数据,对于某些数据分布效果可能不佳。

6、核贝叶斯支持向量机

  • 优点

    • 结合了核方法和贝叶斯方法,具有概率推断能力。

    • 适用于小样本和高维数据。

  • 缺点

    • 计算复杂性较高,对于大规模数据集可能不适用。

7、不平衡类别支持向量机

  • 优点

    • 专门设计用于处理类别不平衡问题。

    • 通过调整类别权重来平衡不同类别的影响。

  • 缺点

    • 需要调整权重参数。

    • 对于极不平衡的数据集,可能需要其他方法来处理。

选择适当的支持向量机算法通常取决于数据的性质、问题的要求以及计算资源的可用性。SVM通常在小到中等规模的数据集上表现出色,但在大规模数据集上可能需要更多的计算资源。此外,需要注意调整超参数以获得最佳性能。

未完待续..

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/609090.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java之异常处理

一、认识异常 1.异常的概念 在 Java 中,将程序执行过程中发生的不正常行为称为异常。。比如之前写代码时经常遇到的: 1. 算术异常 System.out.println(10 / 0); // 执行结果 Exception in thread "main" java.lang.ArithmeticException: /…

深化产教融合,泰迪智能科技助力西南林业大学提质培优

2024年5月7日,泰迪智能科技昆明分公司院校部总监查良红和数据部负责人余雄亮赴西南林业大学理学院就工作室共建事宜进行交流会谈。西南林业大学理学院院长张雁、党委副书记魏轶、副院长谢爽、就业负责人罗丽及学生代表参与本次交流会。 会议伊始,谢副院长…

FPGA HDMI Sensor无线航模摄像头

FPGA方案,接收摄像头sensor 图像数据后,通过HDMI输出到后端 客户应用:无线航模摄像头 主要特性: 1.支持2K以下任意分辨率格式 2.支持多种型号sensor 3.支持自适应摄像头配置,并补齐输出时序 4.可定制功能&#xff…

休斯《公共管理导论》第4版教材精讲视频网课+考研真题讲解

内容简介 本课程是休斯《公共管理导论》(第4版)精讲班,为了帮助参加研究生招生考试指定考研参考书目为休斯《公共管理导论》(第4版)的考生复习专业课,我们根据教材和名校考研真题的命题规律精心讲解教材章节…

HR招聘面试测评,如何判断候选人的创新能力?

创新能力代表着一个人的未来发展潜力,创新能力突出的人,未来的上限就可能更高。而对于一个公司而言,一个具有创新能力的员工,会给公司带来新方案,新思路,对公司的长远发展拥有着十分积极的作用。 而在挑选…

【讲解下迭代加深搜索】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

科林算法_3 图

一、图论基础 多对多的关系 定义&#xff1a;G(V,E) Vertex顶点 Edge边 顶点的集合V{v1,v2} 边的结合E{(v1,v2)} 无向图(1,2) 有向图<1,2> 依附&#xff1a;边(v1,v2)依附于顶点v1,v2 路径&#xff1a;&#xff08;v1,v2)(v2,v3) 无权路径最短&#xff1a;边最少…

深入了解 Flask Request

文章目录 获取请求数据获取请求信息文件上传总结 Flask 是一个轻量级的 Python Web 框架&#xff0c;其简洁的设计和灵活的扩展性使其成为了许多开发者的首选。在 Flask 中&#xff0c;处理 HTTP 请求是至关重要的&#xff0c;而 Flask 提供了丰富而强大的 request 对象来处理…

【限时免费,手慢无】Unity 怪物资源包,MONSTER 动作超丰富,不领后悔!

Unity 怪物资源包&#xff0c;MONSTER 动作超丰富 前言资源包内容领取兑换码 前言 &#x1f47e; 突破想象&#xff01;惊艳众人的怪物模型登场 &#x1f47e; 今天要向大家介绍一款令人瞩目的游戏怪物模型&#xff01;这个看似丑陋的小怪物&#xff0c;却有着巨大的潜力&…

代码随想录刷题随记31-贪心5

代码随想录刷题随记31-贪心5 435. 无重叠区间 leetcode链接 按照右边界排序&#xff0c;从左向右记录非交叉区间的个数。 此时问题就是要求非交叉区间的最大个数。 这里记录非交叉区间的个数还是有技巧的&#xff0c;如图&#xff1a; 左边界排序可不可以呢&#xff1f; 也是…

前缀索引与单列联合索引的选择

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;面经 ⛺️稳中求进&#xff0c;晒太阳 前缀索引 当字段类型为字符串(varchar,text等) 时&#xff0c;有时候需要索引很长的字符串&#xff0c;这会让索引变得很大。查询的时候浪费大量的磁…

能恢复永久删除文件的十大数据恢复软件

当您不小心删除了重要数据&#xff0c;或者由于病毒攻击而丢失了重要数据时&#xff0c;请不要惊慌&#xff0c;我们已经为您准备好了。别无他处&#xff0c;这是您目前市场上最佳数据恢复软件列表的一站式目的地。 能恢复永久删除文件的十大数据恢复软件 1. 奇客数据恢复 这是…

教大家一键下载1688图片信息

电商图片是商品的视觉身份证&#xff0c;对销量有着决定性影响。它们不仅是展示产品&#xff0c;更是讲述品牌故事&#xff0c;激发情感共鸣的工具。高质量的图片能瞬间吸引顾客目光&#xff0c;准确传达产品细节&#xff0c;建立起顾客的信任与购买意愿。在无法亲身体验商品的…

使用网站内容进行多渠道品牌营销的主要优势

在选择服务提供商时&#xff0c;人们使用不同的方式来查找信息并与他们联系。有些人更喜欢网站&#xff0c;有些人则使用社交媒体或电子邮件。网站对于数字存在仍然至关重要&#xff0c;但跨多个渠道管理内容现在至关重要。多渠道营销以客户喜欢的方式与客户建立联系&#xff0…

mysql安装及基础设置

关系型数据库 MySQL是一种关系型数据库管理系统&#xff0c;采用了关系模型来组织数据的数据库&#xff0c;关系数据库将数据保存在不同的表中&#xff0c;用户通过查询 sql 来检索数据库中的数据。 yum 方式安装 mysql # yum -y install mysql-server # systemctl start my…

##12 深入了解正则化与超参数调优:提升神经网络性能的关键策略

文章目录 前言1. 正则化技术的重要性1.1 L1和L2正则化1.2 Dropout1.3 批量归一化 2. 超参数调优技术2.1 网格搜索2.2 随机搜索2.3 贝叶斯优化 3. 实践案例3.1 设置实验3.2 训练和测试 4. 结论 前言 在深度学习中&#xff0c;构建一个高性能的模型不仅需要一个好的架构&#xf…

《这就是ChatGPT》读书笔记

书名&#xff1a;这就是ChatGPT 作者&#xff1a;[美] 斯蒂芬沃尔弗拉姆&#xff08;Stephen Wolfram&#xff09; ChatGPT在做什么&#xff1f; ChatGPT可以生成类似于人类书写的文本&#xff0c;它基本任务是弄清楚如何针对它得到的任何文本产生“合理的延续”。当ChatGPT写…

Redis-新数据类型-Geospatia

新数据类型-Geospatia 简介 GEO&#xff0c;Geographic,地理信息的缩写。 该类型就是元素的二维坐标&#xff0c;在地图上就是经纬度。Redis基于该类型&#xff0c;提供了经纬度设置、查询、范围 查询、距离查询、经纬度Hash等常见操作。 常用命令 geoadd key longitude lat…

python循环结构练习

目录 前言 1、使用while实现模拟用户登录 1.1 题目要求 1.2 解题 2、输入数字&#xff0c;生成对应等腰三角形 2.1 题目要求 2.2 解题 3、输入数字&#xff0c;生成对应的菱形 3.1 题目要求 3.2 解题 总结 前言 本系列主要是讲解python中的题目&#xff0c;目的是为…

c++ libtorch使用cmake建立

如果我们安装好pytorch&#xff0c;其实不一定一定要安装libtorch&#xff0c;默认都已经安装过了 1 进入pytorch conda env list conda activate pytorch 命令行下使用 python -c 来获取libtorch的基本信息&#xff0c; python -c "import torch;print(torch.utils.c…