每日Attention学习5——Multi-Scale Channel Attention Module

模块出处

[link] [code] [WACV 21] Attentional Feature Fusion


模块名称

Multi-Scale Channel Attention Module (MS-CAM)


模块作用

通道注意力


模块结构

在这里插入图片描述


模块代码
import torch
import torch.nn as nn


class MS_CAM(nn.Module):

    def __init__(self, channels=64, r=4):
        super(MS_CAM, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        xl = self.local_att(x)
        xg = self.global_att(x)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        return x * wei

    
if __name__ == '__main__':
    x = torch.randn([3, 256, 16, 16])
    ms_sam = MS_CAM(channels=256)
    out = ms_sam(x)
    print(out.shape)  # 3, 256, 16, 16

原文表述

MS-CAM的核心思想在于,通过改变空间池化的大小,可以在多个尺度上实现通道注意力。为了尽可能保持轻量级,我们只是在注意力模块内将局部上下文添加到全局上下文中。我们选择点卷积(PointWise Conv)作为局部通道上下文融合器,它只利用每个空间位置的点级通道交互。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/607214.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

五一开始内卷前端,如何迅速的一个月内找到工作!

写在前面 五一过了代表新的一年不知不觉过了半年了,各位工作找到怎么样,有没有在工作中遇到解决不了的问题,这些问题后面怎么处理了呢? hello大家好,我又又又来了,今天纯干货,上班的朋友适当摸…

【SAP ME 39】SAP ME WebService超时时间设置

禁止废话,直接上图!!! SAP技术官方说明

Dark Reader:夜间模式,启动!

名人说:一点浩然气,千里快哉风。 ——苏轼 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、介绍二、下载安装1、Chrome应用商店(需科学)2、第三方直链下载 三、使…

深入探索数据链路层:网络通信的基石

⭐小白苦学IT的博客主页⭐ ⭐初学者必看:Linux操作系统入门⭐ ⭐代码仓库:Linux代码仓库⭐ ❤关注我一起讨论和学习Linux系统❤ 前言 在网络通信的宏伟世界中,数据链路层扮演着至关重要的角色。它位于物理层和网络层之间,不仅直接…

HuggingFace烧钱做了一大批实验,揭示多模态大模型哪些trick真正有效

构建多模态大模型时有很多有效的trick,如采用交叉注意力机制融合图像信息到语言模型中,或直接将图像隐藏状态序列与文本嵌入序列结合输入至语言模型。 但是这些trick为什么有效,其计算效率如何,往往解释得很粗略或者或者缺乏充分…

C++ Builder XE EnumWindowsProc遍历所有窗口的名称

BOOL CALLBACK EnumWindowsProc(HWND hwnd, LPARAM lParam) { // 这里可以添加你的处理逻辑 // 例如,将句柄添加到列表中或者其他操作 // 这里我们仅仅输出到调试窗口 OutputDebugString(L"枚举窗口句柄: "); char windowHandle[10];…

ROS 2边学边练(45)-- 构建一个能动的机器人模型

前言 在上篇中我们搭建了一个机器人模型(其由各个关节(joint)和连杆(link)组成),此篇我们会通过设置关节类型来实现机器人的活动。 在ROS中,关节一般有无限旋转(continuous),有限旋转…

【每日力扣】98. 验证二叉搜索树 与 108. 将有序数组转换为二叉搜索树

🔥 个人主页: 黑洞晓威 😀你不必等到非常厉害,才敢开始,你需要开始,才会变的非常厉害 98. 验证二叉搜索树 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&a…

【优选算法】——双指针——15. 三数之和

目录 1.题目 2.解法(排序双指针): 算法思路: 3.代码实现 1.题目 15. 三数之和 提示 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足…

【LLM第三篇】名词解释:RLHF——chatgpt的功臣

RLHF (Reinforcement Learning from Human Feedback) ,直译为:“来自人类反馈的强化学习”。RLHF是一种结合了强化学习和人类反馈的机器学习方法,主要用于训练大模型以执行复杂的任务,尤其是当这些任务难以通过传统的奖励函数来精…

重学java 33.API 4.日期相关类

任何事,必作于细,也必成于实 —— 24.5.9 一、Date日期类 1.Date类的介绍 1.概述: 表示特定的瞬间,精确到亳秒 2.常识: a.1000毫秒 1秒 b.时间原点:1970年1月1日 0时0分0秒(UNIX系统起始时间),叫做格林威治时间,在0时区上 c.时区:北京位于东八区,一个时区…

Linux 操作系统线程1

目录 一、线程 1.1线程的基本概念 1.2 线程相关的API函数 1.2.1 线程的创建 1.2.2 线程退出 1.2.3 线程等待函数 1.2.4 获取线程ID 1.2.5 线程取消 1.2.6 线程的清理函数 一、线程 1.1线程的基本概念 线程是属于进程;一个进程可以有多个线程&#xff…

salmon使用体验

文章目录 salmon转录本定量brief模式一:fastq作为输入文件需要特别注意得地方 模式二: bam文件作为输入 salmon转录本定量 brief 第一点是,通常说的转录组分析其中有一项是转录本定量,这是一个很trick的说话,说成定量…

深度学习——前馈全连接神经网络(鸢尾花)

前馈全连接神经网络对鸢尾花数据集进行分类 1.导入所需要的包2.打印训练集和测试集二维数组3.定义模型4.打印模型信息5.权重和偏执6.编译网络和训练网络7.打印二维数据表格8.绘制图像9.查看准确率 1.鸢尾花数据集可以用 from sklearn.datasets import load_iris 方式获取&#…

医院预约挂号|基于Springboot+vue的医院预约挂号系统小程序的设计与实现(源码+数据库+文档)

医院预约挂号系统小程序 目录 基于Springboot+vue的医院预约挂号系统小程序设计与实现 一、前言 二、系统设计 三、系统功能设计 1小程序端 后台功能模块 4.2.1管理员功能 4.2.2医生功能 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选…

jsp 实验16 MVC 表白墙

源代码以及执行结果截图&#xff1a; ExpressWish_Bean.java package web; import java.util.HashMap; import java.util.ArrayList; import java.util.Iterator; public class ExpressWish_Bean { public HashMap<String,ExpressWish> wishList; ArrayList&…

#内部类#

1,概念 如果一个类定义在另一个类的内部&#xff0c;这个内部类就叫做内部类。内部类是一个独立的类&#xff0c;它不属于外 部类&#xff0c;更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越的访问权限。重点&#xff1a;内部类是一个独立的类 注意&…

JavaEE 多线程详细讲解(2)

1.线程不安全分析 &#xff08;1&#xff09;线程不安全的主要原因就是&#xff0c;系统的抢占式执行&#xff0c;对于内核设计者来说&#xff0c;这是非常方便的一个执行方式&#xff0c;但是这却却导致线程不安全的问题&#xff0c;也有不抢占执行的系统&#xff0c;但是这种…

从心理学角度看,GPT 对人有什么影响?

开启个性化AI体验&#xff1a;深入了解GPT的无限可能 导言 GPT 与我们日常生活的融合标志着技术进步的重大飞跃&#xff0c;为提高效率和创新提供了前所未有的机遇。然而&#xff0c;当我们与这些智能系统日益紧密地交织在一起时&#xff0c;探索它们对个人产生的细微的心理影响…

15-LINUX--线程的创建与同步

一.线程 1.线程的概念 线程是进程内部的一条执行序列或执行路径&#xff0c;一个进程可以包含多条线程。 2.线程的三种实现方式 ◼ 内核级线程&#xff1a;由内核创建&#xff0c;创建开销大&#xff0c;内核能感知到线程的存在 ◼ 用户级线程&#xff1a;线程的创建有用户空…