机器学习笔记之优化算法(十)梯度下降法铺垫:总体介绍

机器学习笔记之优化算法——梯度下降法铺垫:总体介绍

引言

从本节开始,将介绍梯度下降法 ( Gradient Descent,GD ) (\text{Gradient Descent,GD}) (Gradient Descent,GD)

回顾:线搜索方法

线搜索方法作为一种常见优化问题的策略,该方法的特点是:其迭代过程中,将数值解的方向和步长分开执行。对应数学符号表达如下:

  • 其中 P k \mathcal P_k Pk是一个向量,描述更新方向; α k \alpha_k αk是一个 > 0 >0 >0的实数,表示步长。
  • 由于我们更关注向量 P k \mathcal P_k Pk的方向性,因而通常将其表示为单位向量,即 ∣ ∣ P k ∣ ∣ = 1 ||\mathcal P_k|| = 1 ∣∣Pk∣∣=1
    x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk

线搜索方法的方向 P k \mathcal P_k Pk

在线搜索方法——方向角度中介绍过:关于目标函数 f ( ⋅ ) f(\cdot) f()终极目标 min ⁡ X ∈ R n f ( X ) \mathop{\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) XRnminf(X),如果数值解序列 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从严格的单调性
f ( x k + 1 ) < f ( x k ) f(x_{k+1}) < f(x_k) f(xk+1)<f(xk)
那么必然有:

  • 其中 [ ∇ f ( x k ) ] [\nabla f(x_k)] [f(xk)]表示数值解 x k x_k xk对应目标函数的梯度向量,详细推导过程见上方链接。
  • P k \mathcal P_k Pk化为单位向量产生的常数系数合并到 α k \alpha_k αk中。
    f ( x k + 1 ) − f ( x k ) ≈ [ ∇ f ( x k ) ] T P k ⋅ α k < 0 f(x_{k+1}) - f(x_k) \approx [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha_k < 0 f(xk+1)f(xk)[f(xk)]TPkαk<0

从而将满足该条件的 P k \mathcal P_k Pk称作下降方向 ( Descent Direction ) (\text{Descent Direction}) (Descent Direction)。将上式展开有:

  • 其中 θ k \theta_k θk表示向量 ∇ f ( x k ) \nabla f(x_k) f(xk)与向量 P k \mathcal P_k Pk之间的夹角。
  • 在仅考虑方向角度对 f ( x k + 1 ) − f ( x k ) f(x_{k+1}) - f(x_k) f(xk+1)f(xk)影响的情况下,将 α k \alpha_k αk忽略,不改变不等号方向。
    ∣ ∣ ∇ f ( x k ) ∣ ∣ ⋅ ∣ ∣ P k ∣ ∣ ⋅ cos ⁡ θ k < 0 ||\nabla f(x_k)|| \cdot ||\mathcal P_k|| \cdot \cos \theta_k <0 ∣∣∇f(xk)∣∣∣∣Pk∣∣cosθk<0

其中 ∣ ∣ ∇ f ( x k ) ∣ ∣ , ∣ ∣ P k ∣ ∣ ||\nabla f(x_k)||,||\mathcal P_k|| ∣∣∇f(xk)∣∣,∣∣Pk∣∣均表示向量的(均为固定的正值),因而 cos ⁡ θ k ∈ [ − 1 , 0 ) \cos \theta_k \in [-1,0) cosθk[1,0)。当 cos ⁡ θ k = − 1 \cos \theta_k = -1 cosθk=1时, f ( x k + 1 ) − f ( x k ) f(x_{k+1}) - f(x_k) f(xk+1)f(xk)可取得最小值,从而达到最佳的优化方向。而此时下降方向 P k \mathcal P_k Pk与梯度方向 ∇ f ( x k ) \nabla f(x_k) f(xk)方向相反。因此也称此时的 P k \mathcal P_k Pk最速下降方向
其中 ∣ ∣ ∇ f ( x k ) ∣ ∣ ||\nabla f(x_k)|| ∣∣∇f(xk)∣∣是关于上一次迭代结果 x k x_k xk的函数,因而是已知信息。
P k = − ∇ f ( x k ) \mathcal P_k = -\nabla f(x_k) Pk=f(xk)

线搜索方法的步长 α k \alpha_k αk

关于当前迭代步骤的最优步长 α k \alpha_k αk通常有两种求解方式:

  • 精确搜索:在 P k \mathcal P_k Pk固定的情况下,选择使得 f ( x k + 1 ) f(x_{k+1}) f(xk+1)达到最小的步长结果作为当前迭代步骤的最优步长
    其中 x k , P k x_k,\mathcal P_k xk,Pk是确定的信息,因此可将 f ( x k + 1 ) f(x_{k+1}) f(xk+1)视作关于 α \alpha α的函数 ϕ ( α ) \phi(\alpha) ϕ(α)
    α k = arg ⁡ min ⁡ α > 0 f ( x k + 1 ) = arg ⁡ min ⁡ α > 0 f ( x k + α ⋅ P k ) = arg ⁡ min ⁡ α > 0 ϕ ( α ) \begin{aligned}\alpha_k & = \mathop{\arg\min}\limits_{\alpha > 0} f(x_{k+1}) \\ & = \mathop{\arg\min}\limits_{\alpha > 0} f(x_k + \alpha \cdot \mathcal P_k) \\ & = \mathop{\arg\min}\limits_{\alpha > 0} \phi(\alpha) \end{aligned} αk=α>0argminf(xk+1)=α>0argminf(xk+αPk)=α>0argminϕ(α)
    具体求解方式就是: α \alpha α求导,从而获取极值。但真实情况下,这种方式并不可取
    • 关于目标函数 f ( ⋅ ) f(\cdot) f()的复杂程度我们一无所知。关于梯度 ∇ f ( x k + α ⋅ P k ) \nabla f(x_k + \alpha \cdot \mathcal P_k) f(xk+αPk)可能非常复杂。
    • 这仅仅是一次迭代步骤的解。也就是说:每次迭代都要求解精确解。这无疑增加了迭代的计算代价,我们仅希望迭代产生的步长能够收敛到 lim ⁡ k ⇒ ∞ f ( x k ) ⇒ f ∗ \mathop{\lim}\limits_{k \Rightarrow \infty}f(x_{k}) \Rightarrow f^* klimf(xk)f,它的中间过程是否准确并不在乎。
      { ∂ ϕ ( α ) ∂ α = ϕ ′ ( α ) = [ ∇ f ( x k + α ⋅ P k ) ] T P k ϕ ′ ( α ) = 0 ⇒ α k \begin{cases}\begin{aligned} & \frac{\partial \phi(\alpha)}{\partial \alpha} = \phi'(\alpha)= [\nabla f(x_k + \alpha \cdot \mathcal P_k)]^T \mathcal P_k \\ & \phi'(\alpha) = 0 \Rightarrow \alpha_k \end{aligned}\end{cases} αϕ(α)=ϕ(α)=[f(xk+αPk)]TPkϕ(α)=0αk
  • 非精确搜索:相比于精确搜索,我们不计较迭代产生的步长结果是否最优,仅需要该结果能够帮助 f ( x k ) f(x_k) f(xk)有效收敛即可:
    lim ⁡ k ⇒ ∞ f ( x k ) ⇒ f ∗ \mathop{\lim}\limits_{k \Rightarrow \infty}f(x_{k}) \Rightarrow f^* klimf(xk)f
    常见的非精确方法有: Armijo \text{Armijo} Armijo准则,对 Armijo \text{Armijo} Armijo准则进行优化的 Glodstein \text{Glodstein} Glodstein准则,以及基于 Armijo \text{Armijo} Armijo准则,对 Armijo,Glodstein \text{Armijo,Glodstein} Armijo,Glodstein准则进行优化的 Wolfe \text{Wolfe} Wolfe准则
    这里不再赘述。

梯度下降方法整体介绍

梯度下降法是一种典型的线搜索方法。并且它的更新方向 P k \mathcal P_k Pk就是最速下降方向 − ∇ f ( x k ) - \nabla f(x_k) f(xk)

  • 梯度下降法也被称作最速下降法
  • 这个最速下降方向仅仅是每一个迭代步骤中向量 x k x_k xk所在位置的最速下降方向,而不是全局最速下降方向。这与贪心算法类似,是一个局部最优。如下图:
    迭代最优方向与全局最优方向
    很明显,蓝色实线是指本次迭代步骤中的最优方向;而蓝色虚线是指全局最优方向。上图描述的是二维权重特征对应的迭代过程。如果权重特征只有一维特征(一维向量;标量),对应图像表示如下:
    一维特征梯度示例
    此时函数关于 x k x_k xk的梯度 ∇ f ( x k ) = [ f ′ ( x k ) ] 1 × 1 \nabla f(x_k) = [f'(x_k)]_{1 \times 1} f(xk)=[f(xk)]1×1,在迭代过程中寻找最优方向时,仅存在两个方向进行选择:沿着坐标轴与逆着坐标轴(红色箭头)。而此时 f ′ ( x k ) > 0 f'(x_k) >0 f(xk)>0,因而我们将数轴的正方向视作梯度方向;对应地,将数轴的反方向视作负梯度方向针对当前的斜率信息,我们沿着负梯度方向更新到 x k + 1 x_{k+1} xk+1

关于梯度下降法的步长:

  • 在后续过程中将介绍梯度下降法中如何求解精确步长,以及相应的限制条件。这里加一个传送门;

  • 关于非精确搜索求解步长,这里补充一点关于各非精确搜索方法之间的一些逻辑上的关系。

    简单认识 Wolfe Condition \text{Wolfe Condition} Wolfe Condition的收敛性证明一节中介绍了使用 Zoutendijk \text{Zoutendijk} Zoutendijk定理,验证了作用于 Wolfe \text{Wolfe} Wolfe准则的步长结果可以使 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1收敛。但实际上: Zoutendijk \text{Zoutendijk} Zoutendijk定理同样可以作用于 Armijo,Glodstein \text{Armijo,Glodstein} Armijo,Glodstein准则,并证明其步长能够使 { f ( x k ) } k = 1 ∞ \{f(x_k)\}_{k=1}^{\infty} {f(xk)}k=1收敛。

    由于 Wolfe \text{Wolfe} Wolfe准则是基于 Armijo \text{Armijo} Armijo准则提出的,其本质就是: Armijo \text{Armijo} Armijo准则的基础上,那些梯度结果 ∇ f ( x k + 1 ) \nabla f(x_{k+1}) f(xk+1)过小 ϕ ( α ) \phi(\alpha) ϕ(α)点对应的 α \alpha α通过参数 C 2 \mathcal C_2 C2消除掉了
    Armijo Condition :  { ϕ ( α ) < f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α C 1 ∈ ( 0 , 1 ) Wolfe Condition :  { ϕ ( α ) ≤ f ( x k ) + C 1 ⋅ [ ∇ f ( x k ) ] T P k ⋅ α ϕ ′ ( α ) ≥ C 2 ⋅ [ ∇ f ( x k ) ] T P k C 1 ∈ ( 0 , 1 ) C 2 ∈ ( C 1 , 1 ) \begin{aligned} & \text{Armijo Condition : }\begin{cases} \phi(\alpha) < f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \quad \\ \mathcal C_1 \in (0,1) \end{cases} \\ & \text{Wolfe Condition : }\begin{cases} \phi(\alpha) \leq f(x_k) + \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k \cdot \alpha \\ \phi'(\alpha) \geq \mathcal C_2 \cdot [\nabla f(x_k)]^T \mathcal P_k \\ \mathcal C_1 \in (0,1) \\ \mathcal C_2 \in (\mathcal C_1,1) \end{cases} \end{aligned} Armijo Condition :  ϕ(α)<f(xk)+C1[f(xk)]TPkαC1(0,1)Wolfe Condition :  ϕ(α)f(xk)+C1[f(xk)]TPkαϕ(α)C2[f(xk)]TPkC1(0,1)C2(C1,1)
    反过来说: Armijo \text{Armijo} Armijo准则相当于 Wolfe \text{Wolfe} Wolfe准则的一种极端情况:在 C 1 \mathcal C_1 C1确定划分边界的基础上,一个 α \alpha α都不去除,即: C 2 = 1 \mathcal C_2 = 1 C2=1
    同理, Glodstein \text{Glodstein} Glodstein准则也是 Wolfe \text{Wolfe} Wolfe准则中的一种情况。与 Armijo \text{Armijo} Armijo这种极端情况不同的是, Glodstein \text{Glodstein} Glodstein准则更像是一种取巧情况:在 C 1 ∈ ( 0 , 1 2 ) \begin{aligned}\mathcal C_1 \in \left(0,\frac{1}{2} \right)\end{aligned} C1(0,21)确定划分边界的基础上,选择一个合适的 C 2 ∈ ( 1 2 , 1 ) \begin{aligned}\mathcal C_2 \in \left(\frac{1}{2},1\right)\end{aligned} C2(21,1)使得斜率分别为 C 1 ⋅ [ ∇ f ( x k ) ] T P k \mathcal C_1 \cdot [\nabla f(x_k)]^T \mathcal P_k C1[f(xk)]TPk C 2 ⋅ [ f ( x k ) ] T P k \mathcal C_2 \cdot [f(x_k)]^T \mathcal P_k C2[f(xk)]TPk的直线关于斜率为 1 2 [ ∇ f ( x k ) ] T P k \begin{aligned}\frac{1}{2} [\nabla f(x_k)]^T \mathcal P_k\end{aligned} 21[f(xk)]TPk直线对称
    因为在 C 1 ∈ ( 0 , 1 2 ) \mathcal C_1 \in \begin{aligned} \left(0,\frac{1}{2}\right)\end{aligned} C1(0,21)情况下, Wolfe \text{Wolfe} Wolfe准则关于 C 2 \mathcal C_2 C2的描述范围 ( C 1 , 1 ) (\mathcal C_1,1) (C1,1)必然大于 ( 1 2 , 1 ) \begin{aligned}\left(\frac{1}{2},1\right)\end{aligned} (21,1)。因此必然能够找到这个合适的点,从而使该点情况下 Wolfe \text{Wolfe} Wolfe准则等价于 Glodstein \text{Glodstein} Glodstein准则。

关于梯度下降法的收敛速度:相比梯度下降法的收敛性,我们更关心在已知收敛的情况下,它的收敛速度情况。在上一节中对收敛速度进行了简单认识:

  • 从收敛速度判别标准的角度划分,介绍了 Q \mathcal Q Q-收敛速度与 R \mathcal R R-收敛速度;
  • 从收敛速度强度的角度划分(以 Q \mathcal Q Q-收敛速度为例),介绍了 Q \mathcal Q Q-次线性收敛/线性收敛/超线性收敛/二次收敛

而在梯度下降法中,它的收敛速度取决于目标函数 f ( ⋅ ) f(\cdot) f()自身的性质

  • 关于目标函数 f ( ⋅ ) f(\cdot) f()的基础条件:向下有界,在定义域内可微(至少局部可微)
    如果不可微,我们甚至没有办法求解梯度,更不要说梯度的更新了。

  • 要求 f ( ⋅ ) f(\cdot) f()至少是局部凸函数,并且其梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()必然服从利普希兹连续。而利普希兹连续的作用在于:目标函数梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()变化量被常数 L \mathcal L L限制住。或者说: ∇ f ( ⋅ ) \nabla f(\cdot) f()的变化不会过于剧烈

    相反,如果不对 ∇ f ( ⋅ ) \nabla f(\cdot) f()进行约束,很容易会出现梯度爆炸。因为可能存在:目标函数梯度在某一点飙升至极大

在综上条件下,可达到次线性收敛级别的收敛速度。

在上述条件的基础上,如果 f ( ⋅ ) f(\cdot) f()是一个强凸函数 ( Strong Convex Function ) (\text{Strong Convex Function}) (Strong Convex Function),可达到线性收敛级别的收敛速度。
关于凸函数的强度性质:凸函数 < < <严格凸函数 < < <强凸函数。在后续进行介绍。传送门

在第二种条件的基础上:如果 f ( ⋅ ) f(\cdot) f()仍然是一个强凸函数,并且 f ( ⋅ ) f(\cdot) f()在其定义域内二阶可微,其对应的 Hession Matrix ∇ 2 f ( ⋅ ) \text{Hession Matrix} \nabla^2 f(\cdot) Hession Matrix2f()存在并满足:

  • 其中 L \mathcal L L依然是利普希兹连续中的具有限制作用的常数; ≼ \preccurlyeq 表示矩阵小于等于; I \mathcal I I表示单位矩阵。
  • 关于 ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ = ∇ 2 f ( ξ ) \begin{aligned}\frac{||\nabla f(x) - \nabla f(y)||}{||x - y||} = \nabla^2 f(\xi)\end{aligned} ∣∣xy∣∣∣∣∇f(x)f(y)∣∣=2f(ξ)详见拉格朗日中值定理。
    ∀ x , y ∈ R n : ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ = ∇ 2 f ( ξ ) ≼ L ⋅ I \forall x,y \in \mathbb R^n :\begin{aligned}\frac{||\nabla f(x) - \nabla f(y)||}{||x - y||} = \nabla^2 f(\xi) \preccurlyeq \mathcal L \cdot \mathcal I \end{aligned} x,yRn:∣∣xy∣∣∣∣∇f(x)f(y)∣∣=2f(ξ)LI

同样可以达到线性收敛级别的收敛速度。

相关参考:
【优化算法】梯度下降法-总体介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60591.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Appium+Python3环境搭建,其实超简单!

appium可以说是做app最火的一个自动化框架&#xff0c;它的主要优势是支持android和ios&#xff0c;另外脚本语言也是支持java和Python。略懂Python&#xff0c;所以接下来的教程是appiumpython&#xff0c;自己搭建环境的时候&#xff0c;按照某些博客安装遇到各种奇葩问题&am…

Python爬虫——爬虫时如何知道是否代理ip伪装成功?

前言 在进行爬虫时&#xff0c;我们可能需要使用代理IP来伪装自己的身份&#xff0c;以避免被网站封禁。如何判断代理IP是否伪装成功呢&#xff1f;本篇文章将围绕这个问题展开讲解&#xff0c;同时提供Python代码示例。 1. 确认代理IP地址 首先&#xff0c;我们需要确认代理…

【运维工程师学习八】代理及安装配置Nginx反向代理

【运维工程师学习八】代理 正向代理一、使用正向代理的主要作用有&#xff1a;二、反向代理三、使用反向代理的主要作用有&#xff1a;四、透明代理五、各种代理的主要区别六、Nginx的安装七、了解nginx的文件位置八、了解nginx程序的命令行参数九、开启nginx反向代理十、解读n…

设计模式、Java8新特性实战 - List<T> 抽象统计组件

一、背景 在日常写代码的过程中&#xff0c;针对List集合&#xff0c;统计里面的某个属性&#xff0c;是经常的事情&#xff0c;针对List的某个属性的统计&#xff0c;我们目前大部分时候的代码都是这样写&#xff0c;每统计一个变量&#xff0c;就要定义一个值&#xff0c;且…

Qt中ffmpeg API存储和显示摄像头视频

Qt中ffmpeg API存储和显示摄像头视频的功能需要之前写的视频ffmpegAPI的视频播放的流程。 代码源码位置&#xff1a;https://download.csdn.net/download/qq_43812868/88157743?spm1001.2014.3001.5503 一、存储和显示摄像头的视频的流程 这是读取打开视频文件的流程&#x…

14-5_Qt 5.9 C++开发指南_基于HTTP 协议的网络应用程序

文章目录 1. 实现高层网络操作的类2. 基于HTTP协议的网络文件下载3.源码3.1 可是化UI设计3.2 mainwindow.h3.3 mainwindow.cpp 1. 实现高层网络操作的类 Qt 网络模块提供一些类实现 OSI 7 层网络模型中高层的网络协议&#xff0c;如 HTTP、FTP、SNMP等&#xff0c;这些类主要是…

生鲜蔬果小程序的完整教程

随着互联网的发展&#xff0c;线上商城成为了人们购物的重要渠道。其中&#xff0c;小程序商城在近年来的发展中&#xff0c;备受关注和青睐。本文将介绍如何使用乔拓云网后台搭建生鲜果蔬配送小程序&#xff0c;并快速上线。 首先&#xff0c;登录乔拓云网后台&#xff0c;进入…

Xilinx A7开发板LVDS IO无输出问题解决方法

使用A7-35T FGG484的FPGA开发板bank16上的IO作为差分LVDS的输入输出&#xff0c;搭建输入输出测试工程发现LVDS可以输入、无法输出。查阅UG471&#xff0c;找到如下信息&#xff1a; 手册中已经针对A7的LVDS做了明确的应用说明&#xff1a; &#xff08;1&#xff09;HP bank上…

客户流失分析预测案例 -- 机器学习项目基础篇(7)

客户流失 它是指现有的客户、用户、订阅者或任何类型的回头客停止与公司开展业务或结束与公司的关系。 客户流失的类型 合同客户流失&#xff1a;当客户签订了服务合同并决定取消服务时&#xff0c;例如有线电视&#xff0c;SaaS。自愿流失&#xff1a;当用户自愿取消服务时…

PHP正则绕过解析

正则绕过 正则表达式PHP正则回溯PHP中的NULL和false回溯案例案例1案例2 正则表达式 在正则中有许多特殊的字符&#xff0c;不能直接使用&#xff0c;需要使用转义符\。如&#xff1a;$,(,),*,,.,?,[,,^,{。 这里大家会有疑问&#xff1a;为啥小括号(),这个就需要两个来转义&a…

XSS漏洞原理及利用跨站请求伪造CSRF

XSS漏洞原理及利用&跨站请求伪造CSRF XSS一、案例二、什么是XSS三、XSS危害四、XSS的分类4.1、反射型XSS4.1.1、介绍4.1.2、利用过程 4.2、存储型XSS4.2.1、介绍4.2.2、利用过程4.2.3、案例 4.3、DOM型XSS4.3.1、介绍4.3.2、常用的DOM方法4.3.3、案例4.3.3.1、代码分析4.3.…

Linux上安装Keepalived,多台Nginx配置Keepalived(保姆级教程)

目录 一、yum安装 第一步&#xff1a;下载 第二步&#xff1a;编辑Keepalived配置文件&#xff08;第一台&#xff09; 第三步&#xff1a;编辑Keepalived配置文件&#xff08;第二台&#xff09; 第四步&#xff1a;我们在本机利用cmd ping一下 一、yum安装 第一步&…

IDEA基础使用

IDEA基础使用 1、IDEA中显示用法和用户截图展示有调用显示无调用显示 对应方法 2、如何找出项目中所有不被调用方法截图展示对应方法 3、常用代码(Code)说明及快捷键:4、未完待续待日后更新。。。总结&#xff1a;欢迎指导&#xff0c;也祝码友们代码越来越棒&#xff0c;技术越…

元素2D转3D 椭圆形旋转实现

椭圆旋转功能展示 transform-style: preserve-3d;&#xff08;主要css代码&#xff09; gif示例&#xff08;背景图可插入透明以此实现边框线的旋转&#xff09; 导致的无法点击遮挡问题可以参考我的另一个文章 穿透属性-----------------------css穿透属性 实时代码展示

【FAQ】在Linux中使用curl访问EasyCVR,返回报错Unauthorized的原因排查

EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力&#xff0c;比如&#xff1a;视…

HCIE-Datacom真题和机构资料

通过认证验证的能力 具备坚实的企业网络跨场景融合解决方案理论知识&#xff0c;能够使用华为数通产品及解决方案进行企业园区网络、广域互联网络及广域承载网络的规划、建设、维护及优化&#xff0c;能够胜任企业网络全场景专家岗位&#xff08;包括客户经理、项目经理、售前…

CBCGPRibbon 添加背景图片

resource.h中声明资源的ID&#xff1a;ID_RIBBON_BACKIMAGE rc文件中添加png图片路径&#xff1a; ID_RIBBON_BACKIMAGE PNG DISCARDABLE "res\\bkribbon.png" 代码中添加下测&#xff1a; //添加背景图片 m_wndRibbonBar.SetBackgroundImage(ID_RIB…

使用公式与格式控制Excel快速实现计划甘特图

项目中都会遇到做任务计划的需求&#xff0c;有的客户要求需要有甘特图的形式本文介绍如何使用excel 单元格实现甘特图显示&#xff0c;调整任务时间自动填充单元格填色实现甘特图效果。废话不多说&#xff0c;先看效果。 准备工作先创建两列开始时间与完成时间&#xff0c;这…

EMD经验模态分解介绍

EMD概述 其实一种信号分解方法&#xff0c;是一种自适应的数据处理方法&#xff0c;适合非线性和非平稳时间序列的分析和研究&#xff0c;其本质是对数据序列或信号的平稳化处理。 将上面6个信号叠加如下&#xff1a; 就是6个简单信号叠加&#xff0c;形成一个复杂信号。 核心…

Java精品项目系统第151期大学生校园帮系统打包(编号S063)

Java精品项目系统第151期大学生校园帮系统打包&#xff08;编号S063&#xff09; 大家好&#xff0c;小辰今天给大家介绍一个基于Spring Springboot MyBatis实现的大学生校园帮系统&#xff0c;演示视频文章末尾公众号对号查询观看即可 文章目录 Java精品项目系统第151期大学…