Python深度学习基于Tensorflow(5)机器学习基础

文章目录

      • 监督学习
        • 线性回归
        • 逻辑回归
        • 决策树
        • 支持向量机
        • 朴素贝叶斯
      • 集成学习
        • Bagging
        • Boosting
      • 无监督学习
        • 主成分分析
        • KMeans聚类
      • 缺失值和分类数据处理
        • 处理缺失数据
        • 分类数据转化为OneHot编码
      • 葡萄酒数据集示例

机器学习的流程如下所示:

![[Pasted image 20240507152730.png]]

具体又可以分为以下五个步骤:

  1. 明确目标:在机器学习项目中,首先需要明确业务目标和机器学习目标。业务目标是指希望机器学习模型能够帮助实现的具体业务需求,例如提高销售额、降低风险等。机器学习目标则是指需要通过机器学习模型来解决的具体问题,例如分类、回归、聚类等。在明确了目标之后,需要根据目标来选择适当的机器学习任务和评估指标。
  2. 收集数据:在明确了目标之后,需要收集相关的数据用于机器学习模型的训练和测试。数据可以来自于各种来源,例如数据库、文本文件、网页等。在收集数据时,需要确保数据的质量和量,同时也需要考虑数据的可用性和合法性。
  3. 数据探索和数据预处理:在收集到数据之后,需要对数据进行探索和预处理。数据探索是指通过统计学和可视化等手段对数据进行分析,了解数据的特点和规律。数据预处理是指对数据进行清洗、转换、降维等操作,使其满足机器学习模型的要求。在这一步骤中,还需要对数据进行分割,将其分为训练集、验证集和测试集。
  4. 模型选择:在数据预处理之后,需要选择适合的机器学习模型来解决具体的问题。模型选择需要考虑多方面的因素,例如模型的复杂度、训练时间、预测精度等。在选择模型时,还需要考虑模型的可解释性和可扩展性。
  5. 模型评估:在选择好模型之后,需要对模型进行评估,以确定其在实际应用中的表现。模型评估需要使用适当的评估指标,例如准确率、精确率、召回率等。在评估模型时,还需要考虑模型的泛化能力和鲁棒性。通过对模型进行评估,可以进一步优化模型,提高其预测精度和可靠性。一般使用K折交叉验证来评估模型

根据问题类型选择损失函数

问题类型损失函数评估指标
回归模型MSEMSE,MAE
SVMhingeAccuracy,Precision,Recall
二分类模型BinaryCrossentropyAccuracy,Precision,Recall
多分类模型CategoricalCrossentropyTopKCategoricalCrossentropy

监督学习

监督学习通俗来讲指的就是有y的数据集

线性回归

线性回归是最简单,最普通的一种做法, 机器学习中的线性回归非常简单和粗暴,不同于统计模型中有各个变量的P值什么的,机器学习中的线性回归只有一个 parameters 还有一个 score

线性回归公式非常简单: f ( x ) = w 1 x 1 + w 2 x 3 + ⋯ + w n x n + b f(x)=w_1x_1+w_2x_3+\dots+w_nx_n+b f(x)=w1x1+w2x3++wnxn+b

在sklearn导入:from sklearn.linear_model import LinearRegression

from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression

## 这里使用 make_regression 创建回归数据集
X, y = make_regression(n_samples=1000, n_features=10, bias=1.2,  noise=10)

## 因为这里添加了bias,所以会有常数项,而LinearRegression默认包含常数项的 fit_intercept=True
linear_model = LinearRegression(fit_intercept=True)

## 训练
linear_model.fit(X, y)

## 得到模型的系数和常数
linear_model.coef_, linear_model.intercept_

要深入探究线性回归,可以对普通的loss做一些变换,得到不同的线性回归模型:RidgeLassoElasticNet

首先是 L 1 L_1 L1惩罚: L 1 ( w ) = ∣ ∣ w ∣ ∣ 1 = ∑ ∣ w i ∣ L_1(w) = ||w||_1=\sum|w_i| L1(w)=∣∣w1=wi
其次是 L 2 L_2 L2惩罚: L 2 ( w ) = ∣ ∣ w ∣ ∣ 2 = ∑ w i 2 L_2(w)=||w||_2=\sum w_i^2 L2(w)=∣∣w2=wi2
Ridge的loss L = ∑ ( f ( x i ) − y i ) 2 + α L 1 ( w 2 ) \mathcal{L}=\sum (f(x_i)-y_i)^2 + \alpha L_1(w_2) L=(f(xi)yi)2+αL1(w2)

Lasso的loss L = ∑ ( f ( x i ) − y i ) 2 + α L 1 ( w 1 ) \mathcal{L}=\sum (f(x_i)-y_i)^2 + \alpha L_1(w_1) L=(f(xi)yi)2+αL1(w1)

ElasticNet的loss L = ∑ ( f ( x i ) − y i ) 2 + α L 1 ( w ) + β L 2 ( w ) \mathcal{L}=\sum (f(x_i)-y_i)^2 + \alpha L_1(w) + \beta L_2(w) L=(f(xi)yi)2+αL1(w)+βL2(w)
这里统计学的书籍会具体讲一下适用于哪些数据特征的模型,从损失函数中可以看到,主要是为了防止过拟合问题

逻辑回归

逻辑回归是用来处理二分类问题的模型,类似的模型还有Probit模型,不同的是逻辑回归使用sigmoid函数来处理概率,而Probit使用正态分布累计密度函数来处理概率模型。

sigmoid函数如下: f ( z ) = 1 1 + e − z f(z)=\frac{1}{1+e^{-z}} f(z)=1+ez1
正态分布累计密度如下: f ( z ) = 1 2 π ∫ − ∞ z e − t 2 2 d t f(z)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^ze^{-\frac{t^2}{2}}dt f(z)=2π 1ze2t2dt

很明显,两个模型都是把值映射在0-1范围内,但prob涉及到积分,导致运算速度不如逻辑回归,所以逻辑回归更为通用。这里的 z z z 相当于线性回归中的 y y y 值。

这里loss涉及到了一种类似于期望处理方法,如下表所示:

loss l a b e l t r u e = 0 label_{true}=0 labeltrue=0 l a b e l t r u e = 1 label_{true}=1 labeltrue=1
l a b e l p r e d = 0 label_{pred}=0 labelpred=00 α \alpha α
l a b e l p r e d = 1 label_{pred}=1 labelpred=1 β \beta β0

由条件概率可得:

P ( l a b e l p r e d = 0 ) = P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 0 ) P ( l a b e l t r u e = 0 ) + P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 1 ) P ( l a b e l t r u e = 1 ) P(label_{pred}=0)=P(label_{pred}=0|label_{true}=0)P(label_{true}=0) + P(label_{pred}=0|label_{true}=1)P(label_{true}=1) P(labelpred=0)=P(labelpred=0∣labeltrue=0)P(labeltrue=0)+P(labelpred=0∣labeltrue=1)P(labeltrue=1)

由于 P ( l a b e l t r u e = 0 ) P(label_{true}=0) P(labeltrue=0) P ( l a b e l t r u e = 1 ) P(label_{true}=1) P(labeltrue=1)只能等于 0,1,并且是已知的;所以 P ( l a b e l p r e d = 0 ) = P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 0 ) P(label_{pred}=0)=P(label_{pred}=0|label_{true}=0) P(labelpred=0)=P(labelpred=0∣labeltrue=0),或者 P ( l a b e l p r e d = 0 ) = P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 1 ) P(label_{pred}=0)=P(label_{pred}=0|label_{true}=1) P(labelpred=0)=P(labelpred=0∣labeltrue=1);同理 P ( l a b e l p r e d = 1 ) = P ( l a b e l p r e d = 1 ∣ l a b e l t r u e = 0 ) P(label_{pred}=1)=P(label_{pred}=1|label_{true}=0) P(labelpred=1)=P(labelpred=1∣labeltrue=0),或者 P ( l a b e l p r e d = 1 ) = P ( l a b e l p r e d = 1 ∣ l a b e l t r u e = 1 ) P(label_{pred}=1)=P(label_{pred}=1|label_{true}=1) P(labelpred=1)=P(labelpred=1∣labeltrue=1)

L = α P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 1 ) P ( l a b e l t r u e = 1 ) + β P ( l a b e l p r e d = 1 ∣ l a b e l t r u e = 0 ) P ( l a b e l t r u e = 0 ) = α [ 1 − P ( l a b e l p r e d = 0 ∣ l a b e l t r u e = 1 ) ] [ 1 − P ( l a b e l t r u e = 0 ) ] + β P ( l a b e l p r e d = 1 ∣ l a b e l t r u e = 0 ) P ( l a b e l t r u e = 0 ) = α ( 1 − y ) ( 1 − p ( x ) ) + β y p ( x ) \begin{align} \mathcal{L} &= \alpha P(label_{pred}=0|label_{true}=1)P(label_{true}=1) + \beta P(label_{pred}=1|label_{true}=0)P(label_{true}=0) \\ &=\alpha [1-P(label_{pred}=0|label_{true}=1)][1-P(label_{true}=0)] + \beta P(label_{pred}=1|label_{true}=0)P(label_{true}=0) \\ &= \alpha (1-y)(1-p(x)) + \beta yp(x) \end{align} L=αP(labelpred=0∣labeltrue=1)P(labeltrue=1)+βP(labelpred=1∣labeltrue=0)P(labeltrue=0)=α[1P(labelpred=0∣labeltrue=1)][1P(labeltrue=0)]+βP(labelpred=1∣labeltrue=0)P(labeltrue=0)=α(1y)(1p(x))+βyp(x)

很明显,当 α \alpha α β \beta β 相等且为1的时候,惩罚为 L = ∑ y i p ( x i ) + ( 1 − y i ) p ( x i ) \mathcal{L}=\sum y_ip(x_i) +(1-y_i)p(x_i) L=yip(xi)+(1yi)p(xi)
以上的公式很出名,但是在实际应用中,把这一类分为另一类,和把另一类分为这一类的损失是不同的,所以根据情况自定义;

在sklearn导入:from sklearn.linear_model import LogisticRegression

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification

## 这里使用 make_classification 创建分类数据集
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2)

## 建立模型
log_reg = LogisticRegression()

## 模型训练
log_reg.fit(X, y)

## 得到模型的系数和常数
log_reg.intercept_, log_reg.coef_
决策树

决策树有三种出名的算法:ID3,C4.5,CART 太多了,详细可以看周志华老师的机器学习介绍,这里做一下代码使用实例

![[Pasted image 20240507214917.png]]

利用决策树来解决回归

from sklearn.datasets import load_diabetes
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor

## 导入数据
X, y = load_diabetes(return_X_y=True)

## 选择模型
regressor = DecisionTreeRegressor(random_state=0)

## 训练并使用交叉验证打分
cross_val_score(regressor, X, y, cv=10)

利用决策树来解决分类

from sklearn.datasets import load_diabetes
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor

## 导入数据
X, y = load_iris(return_X_y=True)

## 选择模型
clf = DecisionTreeClassifier(random_state=0)

## 训练并使用交叉验证打分
cross_val_score(clf, X, y, cv=10)
支持向量机

支持向量分类的核心思想:找一个超平面把两类数据尽可能给分割开来
支持向量回归的核心思想:找两个平行的超平面把数据尽可能靠拢

![[Pasted image 20240507215503.png]]

SVR

from sklearn.svm import SVR
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import numpy as np

n_samples, n_features = 10, 5

rng = np.random.RandomState(0)
y = rng.randn(n_samples)
X = rng.randn(n_samples, n_features)

regr = make_pipeline(StandardScaler(), SVR(C=1.0, epsilon=0.2))
regr.fit(X, y)

SVC

from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])

clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
clf.fit(X, y)
朴素贝叶斯

朴素贝叶斯假设:属性条件独立,其核心思想 p ( c ∣ x ) = p ( x ∣ c ) p ( c ) p ( x ) p(c|x)=\frac{p(x|c)p(c)}{p(x)} p(cx)=p(x)p(xc)p(c)
其中 c c c 表示类别,利用计算 p ( x ∣ c ) p ( c ) p(x|c)p(c) p(xc)p(c) 的方式去计算 p ( c ∣ x ) p(c|x) p(cx) ,这里的 p ( x ) p(x) p(x) 由于做比较就可以忽略;

由于属性条件独立,有 p ( x ∣ c ) = p ( ( x 1 , x 2 , … , x m ) ∣ c ) = ∏ p ( x i ∣ c ) p(x|c)=p((x_1,x_2,\dots,x_m)|c)=\prod p(x_i|c) p(xc)=p((x1,x2,,xm)c)=p(xic)
最后判别类别有: a r g m a x    p ( c ) ∏ p ( x i ∣ c ) argmax \ \ p(c)\prod p(x_i|c) argmax  p(c)p(xic)

import numpy as np
from sklearn.naive_bayes import CategoricalNB

rng = np.random.RandomState(1)
X = rng.randint(5, size=(6, 100))
y = np.array([1, 2, 3, 4, 5, 6])

clf = CategoricalNB()
clf.fit(X, y)

集成学习

集成学习思想类似于:三个臭皮匠顶一个诸葛亮通过总结不同模型的输出结果得到一个最终的结果

集成学习有两种典型的算法:装袋算法(Bagging) 和 提升分类器(Boosting)

Boosting:个体学习器之间存在强依赖关系,必须串行生成的序列化方法。

Bagging:个体学习器之间存在弱依赖关系,可同时生成的并行化方法。

Bagging
  1. 采样:从原始数据集中,使用Bootstrap方法进行有放回的抽样,生成新的训练子集。这意味着每个子集都是通过随机选择原始数据集中的样本而创建的,且一个样本在一次抽样中可以被重复选中多次,而有些样本可能一次都不会被选中。通常,这些子集的大小与原始数据集相同。
  2. 训练:对于每一个由Bootstrap生成的子集,使用一个基础学习算法(如决策树、线性回归等)独立地训练一个模型。由于各个子集之间是独立的,这些模型的训练过程可以并行进行。
  3. 预测: 对于分类任务,所有模型的预测结果将通过投票的方式汇总,即每个模型对测试样本的预测类别进行投票,最终得票最多的类别作为Bagging集成的预测结果。对于回归任务,所有模型的预测值将被简单平均(或加权平均),以得到最终的预测值。

Bagging通过结合多个模型的预测来减少单一模型可能引入的方差,从而提高整体模型的稳定性和泛化能力。这种方法特别有效于那些具有高方差的学习算法。通过上述步骤,Bagging能够有效地减少模型的过拟合风险,并在很多情况下显著提升模型的性能。随机森林(Random Forest)是Bagging思想的一个典型应用,它在构建决策树时不仅使用Bootstrap采样,还加入了特征随机选择的机制,进一步增强了模型的多样性与泛化能力。

Boosting
  1. 先从初始训练集训练处一个基学习器;
  2. 再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的样本在后续受到更多的关注;
  3. 基于调整后的样本分布来训练下一个基学习器;
  4. 一直重复上述步骤,直到基学习器的个数达到train前的指定数T,然后将这T个基学习器进行加权;

![[无标题.png]]

基于Boosting思想的算法主要有:AdaBoost,GBDT,XGBoost

无监督学习

主成分分析

主成分分析 PCA 是一种降维的算法,还有一种叫 TSNE

PCA的基本思想是通过旋转的方式,把轴转换到方差最大的方向,然后选取方差大小前面的几个轴

import numpy as np
from sklearn.decomposition import PCA

X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=2)
pca.fit(X)
KMeans聚类
from sklearn.cluster import KMeans
import numpy as np

X = np.array([[1, 2], [1, 4], [1, 0],[10, 2], [10, 4], [10, 0]])
kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X)

## 查看x对应的label
kmeans.labels_

当数据量较大时,可以使用 MiniBatchKMeans 进行计算,这样不用带入所有数据

缺失值和分类数据处理

处理缺失数据

处理缺失数据主要在sklearn.impute这个包内,impute.SimpleImputer,impute.IterativeImputer,impute.MissingIndicator,impute.KNNImputer

import pandas as pd
from io import StringIO
import numpy as  np
from sklearn.impute import SimpleImputer

csv_data = '''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,'''

## 读取数据
df = pd.read_csv(StringIO(csv_data))

## 观察每一列的缺失值数量
df.isnull().sum()

## 缺失值使用均值填充
imr = SimpleImputer(missing_values=np.nan, strategy='mean')
imputed_data = imr.fit_transform(df)
imputed_data
分类数据转化为OneHot编码
import pandas as pd
df = pd.DataFrame([
            ['green', 'M', 10.1, 'class1'], 
            ['red', 'L', 13.5, 'class2'], 
            ['blue', 'XL', 15.3, 'class1']])

df.columns = ['颜色', '型号', '价格', '类别']

size_mapping = {
           'XL': 3,
           'L': 2,
           'M': 1}

df['型号'] = df['型号'].map(size_mapping)

## 获取OneHot编码
pd.get_dummies(df[['价格', '颜色', '型号', '类别']], drop_first=True)

get_dummies 函数会把所有的字符变量都变成OneHot编码,但是很明显,n个维度只能有n-1个编码,否则会造成多重共线性,不可取,所以一般要使用 drop_first

葡萄酒数据集示例

准备数据,这里使用 sklearn.datasets 中的 wine 数据集

import pandas as pd
import numpy as np
from sklearn.datasets import load_wine


data = load_wine()
X, y, feature_names = data['data'], data['target'], data['feature_names']
df_wine = pd.DataFrame(np.c_[X, y], columns=feature_names + ['class'])

切分训练集和测试集,标准化

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

stdsc = StandardScaler()
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)

这里使用逻辑回归尝试做一个模型,发现效果还不错,这里的C是惩罚系数的倒数

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(penalty='l1', C=0.1,solver='liblinear')
lr.fit(X_train_std, y_train)
print('Training accuracy:', lr.score(X_train_std, y_train))
print('Test accuracy:', lr.score(X_test_std, y_test))

# Training accuracy: 0.9838709677419355
# Test accuracy: 0.9814814814814815

接着通过更改惩罚系数,观察逻辑回归模型参数的变化过程

weights, params = [], []
for c in np.arange(-4, 6):
    lr = LogisticRegression(penalty='l1', C=10.**c, solver='liblinear')
    lr.fit(X_train_std, y_train)
    weights.append(lr.coef_[1])
    params.append(10.**c)

weights = np.array(weights)

画图,由于x轴是对数距离,所以需要放缩 plt.xscale('log')

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False 

fig = plt.figure()
ax = plt.subplot(111)
    
colors = ['blue', 'green', 'red', 'cyan', 
         'magenta', 'yellow', 'black', 
          'pink', 'lightgreen', 'lightblue', 
          'gray', 'indigo', 'orange']

for column, color in zip(range(weights.shape[1]), colors):
    plt.plot(params, weights[:, column], label=df_wine.columns[column+1], color=color)

## 在y=0上画一根--
plt.axhline(0, color='black', linestyle='--', linewidth=3)

## 限制x轴为[10^-5, 10^5]
plt.xlim([10**(-5), 10**5])

plt.ylabel('权重系数')
plt.xlabel('C')

## !!! x轴的距离使用对数距离
plt.xscale('log')

## 设置pic的legend
plt.legend(loc='upper left')
ax.legend(loc='upper center', 
          bbox_to_anchor=(1.38, 1.03),
          ncol=1, fancybox=True)

在这里插入图片描述

最后进行特征选择,分值的方式有两种:AICBIC;选择的方式有三种: 前向选择后向选择以及逐步选择。这里是根据score的分值,使用后向选择的方式对变量进行剔除。

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

class SBS():
    def __init__(self, estimator, k_features, scoring=accuracy_score,
                 test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
        self.random_state = random_state

    def fit(self, X, y):
        
        X_train, X_test, y_train, y_test = \
                train_test_split(X, y, test_size=self.test_size, 
                                 random_state=self.random_state)

        dim = X_train.shape[1]
        self.indices_ = tuple(range(dim))
        self.subsets_ = [self.indices_]
        score = self._calc_score(X_train, y_train, 
                                 X_test, y_test, self.indices_)
        self.scores_ = [score]

        while dim > self.k_features:
            scores = []
            subsets = []

            for p in combinations(self.indices_, r=dim-1):
                score = self._calc_score(X_train, y_train, 
                                         X_test, y_test, p)
                scores.append(score)
                subsets.append(p)

            best = np.argmax(scores)
            self.indices_ = subsets[best]
            self.subsets_.append(self.indices_)
            dim -= 1

            self.scores_.append(scores[best])
        self.k_score_ = self.scores_[-1]

        return self

    def transform(self, X):
        return X[:, self.indices_]

    def _calc_score(self, X_train, y_train, X_test, y_test, indices):
        self.estimator.fit(X_train[:, indices], y_train)
        y_pred = self.estimator.predict(X_test[:, indices])
        score = self.scoring(y_test, y_pred)
        return score

接着使用KNN模型作为分类器

from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt

knn = KNeighborsClassifier(n_neighbors=2)

# 选择特征
sbs = SBS(knn, k_features=1)
sbs.fit(X_train_std, y_train)

# 可视化特征子集的性能
k_feat = [len(k) for k in sbs.subsets_]

plt.plot(k_feat, sbs.scores_, marker='o')
plt.ylim([0.7, 1.1])
plt.ylabel('Accuracy')
plt.xlabel('Number of features')
plt.grid()
plt.tight_layout()
plt.show()

得到结果:

![[Pasted image 20240508000139.png]]

使用随机森林获取特征重要性

from sklearn.ensemble import RandomForestClassifier

feat_labels = feature_names

forest = RandomForestClassifier(n_estimators=1000,
                                random_state=0,
                                n_jobs=-1)

forest.fit(X_train, y_train)
importances = forest.feature_importances_

indices = np.argsort(importances)[::-1]

plt.title('Feature Importances')
plt.bar(range(X_train.shape[1]), 
        importances[indices],
        color='lightblue', 
        align='center')

plt.xticks(range(X_train.shape[1]), feat_labels, rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.tight_layout()
plt.show()

![[Pasted image 20240508000341.png]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/605591.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

转转小程序数据处理

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872,x30184483x…

[Cmake Qt]找不到文件ui_xx.h的问题?有关Qt工程的问题,看这篇文章就行了。

前言 最近在开发一个组件,但是这个东西是以dll的形式发布的界面库,所以在开发的时候就需要上层调用。 如果你是很懂CMake的话,ui_xx.h的文件目录在 ${CMAKE_CURRENT_BINARY_DIR} 下 然后除了有关这个ui_xx.h,还有一些别的可以简…

数据分析概念定义和发展前景

数据分析概念定义和发展前景 前言一、数据分析概念二、数据的定义数据的定义数据的分类定性数据定量数据 三、数据的价值数据为什么具有价值 四、数据分析的目的对于企业来说总结 五、数据分析类型的划分描述性统计分析探索性数据分析传统的统计分析方法验证性数据分析 六、 数…

springboot本地文件同步到nacos 本地文件上传到nacos 使用nacos

导入依赖 <!--配置文件使用nacos--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId><version>nacos版本</version></dependency><dependency…

vscode 实现本地服务器部署小结

在查阅 MDN 网站的时候&#xff0c;偶然发现的原来 vscode 也可以实现本地化服务器部署&#xff0c;来模拟服务器的运行。 安装插件 在VSCode的插件市场搜索并安装以下插件&#xff1a; – Live Server&#xff08;用于开启本地服务器&#xff09; – Debugger for Chrome&a…

nlp课设 - 基于BERT 的情感分类

基于BERT 的情感分类 主要论文&#xff1a; BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding&#xff08;双向Transformer 的预训练&#xff09; 核心技术&#xff1a; Embedding 、Attention --> Transformer 任务简介、拟解决问题…

HTML5 Canvas发光Loading动画特效源码

源码介绍 之前我们分享过很多基于CSS3的Loading动画效果&#xff0c;相信大家都很喜欢。今天我们要来分享一款基于HTML5 Canvas的发光Loading加载动画特效。Loading旋转图标是在canvas画布上绘制的&#xff0c;整个loading动画是发光3D的视觉效果&#xff0c;HTML5非常强大。 …

Leetcode127.单词接龙

https://leetcode.cn/problems/word-ladder/description/?envTypestudy-plan-v2&envIdtop-interview-150 文章目录 题目描述解题思路代码-BFS解题思路二——双向BFS代码 题目描述 字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 …

【HTTP下】总结{重定向/cookie/setsockopt/流操作/访问网页/总结}

文章目录 1.请求头2.cookie理解 3.vim跳转/搜索4.setsockopt被重用的意思 5.流操作5.1定位读取指针5.2ifstram::read() 6.总结6.1 百度搜索框搜索功能字符6.2请求uri请求和响应的第一行都有http版本请求内容里有GET /favicon.ico HTTP/1.1 6.3访问网页Fiddler抓包原理&#xff…

Hive SQL-DML-Load加载数据

Hive SQL-DML-Load加载数据 在 Hive 中&#xff0c;可以使用 SQL DML&#xff08;Data Manipulation Language&#xff09;语句中的 LOAD 命令来加载数据到表中。LOAD 命令用于将本地文件系统或 HDFS&#xff08;Hadoop 分布式文件系统&#xff09;中的数据加载到 Hive 表中。 …

0508_IO3

练习1&#xff1a; 1&#xff1a;使用 dup2 实现错误日志功能 使用 write 和 read 实现文件的拷贝功能&#xff0c;注意&#xff0c;代码中所有函数后面&#xff0c;紧跟perror输出错误信息&#xff0c;要求这些错误信息重定向到错误日志 err.txt 中去 1 #include <stdio.h…

数据可视化训练第一天(matplotlib直线;散点图,随机漫步)

前言 本人自己的练习记录&#xff1b;如有错误请指正&#xff1b; https://matplotlib.org/stable/gallery/lines_bars_and_markers/index.html 官方有许多例子&#xff0c;可以找到自己需要的图像模仿进行绘制 1.一个简单的直线例子 就如同我们学习C语言的第一个helloword时…

中间件的使用

中间件是全局使用 工厂函数定义中间件 middleware.py # 工厂函数的中间件 def simple_middleware(get_response):def middleware(request):print("在视图函数处理之前执行、、、、、")response get_response(request)print("在视图函数处理之后执行。。。。…

JavaSE——方法详解

1. 方法的概念 方法就是一个代码片段 . 类似于 C 语言中的 " 函数 " 。 方法存在的意义 : 1. 是能够模块化的组织代码(当代码规模比较复杂的时候). 2. 做到代码被重复使用, 一份代码可以在多个位置使用. 3. 让代码更好理解更简单. 4. 直接调用现有方法开发, 不…

YOLOv8训练流程-原理解析[目标检测理论篇]

关于YOLOv8的主干网络在YOLOv8网络结构介绍-CSDN博客介绍了&#xff0c;为了更好地学习本章内容&#xff0c;建议先去看预测流程的原理分析YOLOv8原理解析[目标检测理论篇]-CSDN博客&#xff0c;再次把YOLOv8网络结构图放在这里&#xff0c;方便随时查看。 ​ 1.前言 YOLOv8训练…

分布式光纤测温DTS的测温范围是多少?

分布式光纤测温DTS的测温范围不仅仅取决于光缆的感温能力&#xff0c;还受到多种复杂因素的影响。尽管高温光缆可以耐高温&#xff0c;低温光缆可以耐低温&#xff0c;甚至镀金光缆能够耐受高达700摄氏度的极高温度&#xff0c;然而&#xff0c;这些因素并不能完全解释测温范围…

平航杯复现

简单介绍及前期操作 esxi镜像挂载是一个新的创新点 就根据官方的wp进行挂载就可以了&#xff0c;后面差不多常规的服务器取证操作&#xff0c;然后服务器和计算机&#xff0c;u盘取证都有点联系&#xff0c;还是需要队友配合好一点 配置网段我的建议是把本机的配置改一下&am…

[windows系统安装/重装系统][step-1]U盘启动盘制作,微软官方纯净系统镜像下载

前言 U盘至少8GB吧我这刚好有个空闲的U盘8GB容量&#xff0c;制作启动盘且放入一个最新win10官方镜像足够 不是天天装系统&#xff0c;至少USB2.0 (我用的2.0的一个闲置U盘)即可&#xff0c;当然平时传资料什么的3.0会快些 U盘启动盘仅需要制作一次&#xff0c; U盘启动盘制…

python能够干什么?

python有哪些用途&#xff1f; Python是一种高级编程语言&#xff0c;它被广泛用于各种不同的领域。以下是Python的一些常见用途&#xff1a; 网络应用开发&#xff1a;Python可以用于编写Web应用程序、API、爬虫、网络服务器等。数据科学和机器学习&#xff1a;Python拥有许…

《intel开发手册卷1》学习笔记1

1、操作模式 IA-32架构支持三种基本操作模式:保护模式、实地址模式和系统管理模式。操作模式决定了哪些指令和体系结构功能是可访问的: 1&#xff09;保护模式&#xff1a;该模式是处理器的自然状态。保护模式的功能之一是能够在受保护的多任务环境中直接执行“实地址模式”80…