Elasticsearch的使用

Elasticsearch

1、认识和安装

Elasticsearch的官方网站如下:

https://www.elastic.co/cn/elasticsearch

Elasticsearch是由elastic公司开发的一套搜索引擎技术,它是elastic技术栈中的一部分。完整的技术栈包括:

  • Elasticsearch:用于数据存储、计算和搜索
  • Logstash/Beats:用于数据收集
  • Kibana:用于数据可视化

整套技术栈被称为ELK,经常用来做日志收集、系统监控和状态分析等等:

image-20240429090624459

整套技术栈的核心就是用来存储搜索计算的Elasticsearch,因此我们接下来学习的核心也是Elasticsearch。

我们要安装的内容包含2部分:

  • elasticsearch:存储、搜索和运算
  • kibana:图形化展示

首先Elasticsearch不用多说,是提供核心的数据存储、搜索、分析功能的。

然后是Kibana,Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。

Kibana是elastic公司提供的用于操作Elasticsearch的可视化控制台。它的功能非常强大,包括:

  • 对Elasticsearch数据的搜索、展示
  • 对Elasticsearch数据的统计、聚合,并形成图形化报表、图形
  • 对Elasticsearch的集群状态监控
  • 它还提供了一个开发控制台(DevTools),在其中对Elasticsearch的Restful的API接口提供了语法提示

安装ES

通过下面的Docker命令即可安装单机版本的elasticsearch:

docker run -d \
  --name es \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  -e "discovery.type=single-node" \
  -v es-data:/usr/share/elasticsearch/data \
  -v es-plugins:/usr/share/elasticsearch/plugins \
  --privileged \
  --network hmall \
  -p 9200:9200 \
  -p 9300:9300 \
  elasticsearch:7.12.1

注意,这里我们采用的是elasticsearch的7.12.1版本,由于8以上版本的JavaAPI变化很大,在企业中应用并不广泛,企业中应用较多的还是8以下的版本。

安装完成后,访问9200端口,即可看到响应的Elasticsearch服务的基本信息:

image-20240429091604800

安装Kibana

通过下面的Docker命令,即可部署Kibana:

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=hmall \
-p 5601:5601  \
kibana:7.12.1

image-20240429091705520

选择Explore on my own之后,进入主页面:

image-20240429091820111

然后选中Dev tools,进入开发工具页面:

image-20240429091806889

2、基础概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

image-20240429101444831

{
    "id": 1,
    "title": "小米手机",
    "price": 3499
}
{
    "id": 2,
    "title": "华为手机",
    "price": 4999
}
{
    "id": 3,
    "title": "华为小米充电器",
    "price": 49
}
{
    "id": 4,
    "title": "小米手环",
    "price": 299
}

因此,原本数据库中的一行数据就是ES中的一个JSON文档;而数据库中每行数据都包含很多列,这些列就转换为JSON文档中的字段(Field)

索引和映射

随着业务发展,需要在es中存储的文档也会越来越多,比如有商品的文档、用户的文档、订单文档等等:

elasticsearch之所以有如此高性能的搜索表现,正是得益于底层的倒排索引技术。那么什么是倒排索引呢?

倒排索引的概念是基于MySQL这样的正向索引而言的。

image-20240429101519084

所有文档都散乱存放显然非常混乱,也不方便管理。

因此,我们要将类型相同的文档集中在一起管理,称为索引(Index)。例如:

商品索引

{
    "id": 1,
    "title": "小米手机",
    "price": 3499
}

{
    "id": 2,
    "title": "华为手机",
    "price": 4999
}

{
    "id": 3,
    "title": "三星手机",
    "price": 3999
}

用户索引

{
    "id": 101,
    "name": "张三",
    "age": 21
}

{
    "id": 102,
    "name": "李四",
    "age": 24
}

{
    "id": 103,
    "name": "麻子",
    "age": 18
}

订单索引

{
    "id": 10,
    "userId": 101,
    "goodsId": 1,
    "totalFee": 294
}

{
    "id": 11,
    "userId": 102,
    "goodsId": 2,
    "totalFee": 328
}
  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束

mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

如图:

image-20240429101849147

那是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长之处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

image-20240429101911482

3、倒排索引

正向索引

我们先来回顾一下正向索引。

例如有一张名为tb_goods的表:

idtitleprice
1小米手机3499
2华为手机4999
3华为小米充电器49
4小米手环49

其中的id字段已经创建了索引,由于索引底层采用了B+树结构,因此我们根据id搜索的速度会非常快。但是其他字段例如title,只在叶子节点上存在。

因此要根据title搜索的时候只能遍历树中的每一个叶子节点,判断title数据是否符合要求。

比如用户的SQL语句为:

select * from tb_goods where title like '%手机%';

那搜索的大概流程如图:

image-20240429092109438

综上,根据id精确匹配时,可以走索引,查询效率较高。而当搜索条件为模糊匹配时,由于索引无法生效,导致从索引查询退化为全表扫描,效率很差。

因此,正向索引适合于根据索引字段的精确搜索,不适合基于部分词条的模糊匹配。

而倒排索引恰好解决的就是根据部分词条模糊匹配的问题。

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理和应用,流程如下:

  • 将每一个文档的数据利用分词算法根据语义拆分,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建正向索引

此时形成的这张以词条为索引的表,就是倒排索引表,两者对比如下:

正向索引

id(索引)titleprice
1小米手机3499
2华为手机4999
3华为小米充电器49
4小米手环49

倒排索引

词条(索引)文档id
小米1,3,4
手机1,2
华为2,3
充电器3
手环4

倒排索引的搜索流程如下(以搜索"华为手机"为例),如图:

image-20240429092342781

4、IK分词器

Elasticsearch的关键就是倒排索引,而倒排索引依赖于对文档内容的分词,而分词则需要高效、精准的分词算法,IK分词器就是这样一个中文分词算法。

安装IK分词器

方案一:在线安装

运行一个命令即可:

docker exec -it es ./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

然后重启es容器:

docker restart es

方案二:离线安装

如果网速较差,也可以选择离线安装。

首先,查看之前安装的Elasticsearch容器的plugins数据卷目录:

docker volume inspect es-plugins

结果如下:

[
    {
        "CreatedAt": "2024-11-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

可以看到elasticsearch的插件挂载到了/var/lib/docker/volumes/es-plugins/_data这个目录。我们需要把IK分词器上传至这个目录。

然后重启es

使用IK分词器

IK分词器包含两种模式:

  • ik_smart:智能语义切分
  • ik_max_word:最细粒度切分

我们在Kibana的DevTools上来测试分词器,首先测试Elasticsearch官方提供的标准分词器:

POST /_analyze
{
  "analyzer": "standard",
  "text": "你他娘的真是个天才"
}

image-20240429102954822

{
  "tokens" : [
    {
      "token" : "你",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "他",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "娘",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "的",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "真",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    },
    {
      "token" : "是",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "<IDEOGRAPHIC>",
      "position" : 5
    },
    {
      "token" : "个",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "<IDEOGRAPHIC>",
      "position" : 6
    },
    {
      "token" : "天",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "<IDEOGRAPHIC>",
      "position" : 7
    },
    {
      "token" : "才",
      "start_offset" : 8,
      "end_offset" : 9,
      "type" : "<IDEOGRAPHIC>",
      "position" : 8
    }
  ]
}

可以看到原本的分词器对中文分词是不太友好的

我们使用Ikun分词器看看

POST /_analyze
{
  "analyzer": "ik_smart",
  "text": "你他娘的真是个天才"
}

执行结果如下:

image-20240429103840259

可以看到明显的差别,更符合我们国内自己人的使用

拓展词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“Ikun”,“鸡你太美” 等。

IK分词器无法对这些词汇分词,测试一下:

POST /_analyze
{
  "analyzer": "ik_max_word",
  "text": "中分头背带裤,我是Ikun你记住,鸡你太美"
}

image-20240429104101129

可以看到我们后面暗藏玄坤的词语并没有被分到一起。

所以要想正确分词,IK分词器的词库也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

image-20240429104220718

注意,如果采用在线安装的通过,默认是没有config目录的

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)在IK分词器的config目录新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

Ikun
鸡你太美

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

次测试,可以发现Ikun鸡你太美都正确分词了:

image-20240429104642078

总结

分词器的作用是什么?

  • 创建倒排索引时,对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

5、索引库操作

Index就类似数据库表,Mapping映射就类似表的结构。我们要向es中存储数据,必须先创建Index和Mapping

Mapping映射属性

Mapping是对索引库中文档的约束,常见的Mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:longintegershortbytedoublefloat
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段
{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "中分头背带裤",
    "email": "zy@123.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "徐坤",
        "lastName": "蔡"
    }
}

对应的每个字段映射(Mapping):

字段名字段类型类型说明是否****参与搜索是否****参与分词分词器
ageinteger整数——
weightfloat浮点数——
isMarriedboolean布尔——
infotext字符串,但需要分词IK
emailkeyword字符串,但是不分词——
scorefloat只看数组中元素类型——
namefirstNamekeyword字符串,但是不分词——
lastNamekeyword字符串,但是不分词——

索引库的CRUD

创建索引库和映射

基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

image-20240502184845777

查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

image-20240502185004003

删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。因此修改索引库能做的就是向索引库中添加新字段,或者更新索引库的基础属性。

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}
  1. 错误操作

那我们先来试一试错误的操作,直接修改已有的字段看看是否会报错

image-20240502190211304

可以看到提示我们不能将firstName字段 keyword 修改成text

  1. 正确操作

image-20240502190315559

image-20240502190326392

6、文档操作

文档的CRUD

新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
}

image-20240503090949840

查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

image-20240503091113115

删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

image-20240503091201397

修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 局部修改:修改文档中的部分字段
全量修改

全量修改是覆盖原来的文档,其本质是两步操作:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

由于id1的文档已经被删除,所以第一次执行时,得到的反馈是created

image-20240503091408661

所以如果执行第2次时,得到的反馈则是updated

image-20240503091453430

局部修改

局部修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

image-20240503091740382

批处理

批处理采用POST请求,基本语法如下:

POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }

其中:

  • index代表新增操作
    • _index:指定索引库名
    • _id指定要操作的文档id
    • { "field1" : "value1" }:则是要新增的文档内容
  • delete代表删除操作
    • _index:指定索引库名
    • _id指定要操作的文档id
  • update代表更新操作
    • _index:指定索引库名
    • _id指定要操作的文档id
    • { "doc" : {"field2" : "value2"} }:要更新的文档字段

示例,批量新增:

# 批处理 新增
POST _bulk
{"index" : { "_index" : "ikun","_id":"3"}}
{"info":"鸡你太美2","age":"11","name":{"firstName": "只因","lastName": "蔡"}}
{"index" : { "_index" : "ikun","_id":"4"}}
{"info":"鸡你太美","age":"11","name":{"firstName": "只因","lastName": "蔡"}}

image-20240503092753817

批量删除:

POST /_bulk
{"delete":{"_index":"ikun", "_id": "3"}}
{"delete":{"_index":"ikun", "_id": "4"}}

image-20240503092821358

7、RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

官方文档地址:

https://www.elastic.co/guide/en/elasticsearch/client/index.html

初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)在item-service模块中引入esRestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.17.10,所以我们需要覆盖默认的ES版本:

  <properties>
      <maven.compiler.source>11</maven.compiler.source>
      <maven.compiler.target>11</maven.compiler.target>
      <elasticsearch.version>7.12.1</elasticsearch.version>
  </properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类IndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package com.hmall.item.es;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

public class IndexTest {

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @Test
    void testConnect() {
        System.out.println(client);
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

image-20240504113230329

创建索引库

由于要实现对商品搜索,所以我们需要将商品添加到Elasticsearch中,不过需要根据搜索业务的需求来设定索引库结构,而不是一股脑的把MySQL数据写入Elasticsearch.

Mapping映射

搜索页面的效果如图所示:

image-20240504113300055

实现搜索功能需要的字段包括三大部分:

  • 搜索过滤字段
    • 分类
    • 品牌
    • 价格
  • 排序字段
    • 默认:按照更新时间降序排序
    • 销量
    • 价格
  • 展示字段
    • 商品id:用于点击后跳转
    • 图片地址
    • 是否是广告推广商品
    • 名称
    • 价格
    • 评价数量
    • 销量

对应的商品表结构如下,索引库无关字段已经划掉:

image-20240504113315646

结合数据库表结构,以上字段对应的mapping映射属性如下:

字段名字段类型类型说明是否****参与搜索是否****参与分词分词器
idlong长整数1——
nametext字符串,参与分词搜索11IK
priceinteger以分为单位,所以是整数1——
stockinteger字符串,但需要分词1——
imagekeyword字符串,但是不分词——
categorykeyword字符串,但是不分词1——
brandkeyword字符串,但是不分词1——
soldinteger销量,整数1——
commentCountinteger评价,整数——
isADboolean布尔类型1——
updateTimeDate更新时间1——

因此,最终我们的索引库文档结构应该是这样:

PUT /items
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word"
      },
      "price":{
        "type": "integer"
      },
      "stock":{
        "type": "integer"
      },
      "image":{
        "type": "keyword",
        "index": false
      },
      "category":{
        "type": "keyword"
      },
      "brand":{
        "type": "keyword"
      },
      "sold":{
        "type": "integer"
      },
      "commentCount":{
        "type": "integer",
        "index": false
      },
      "isAD":{
        "type": "boolean"
      },
      "updateTime":{
        "type": "date"
      }
    }
  }
}

创建索引

创建索引库的API如下:

image-20240504115111358

代码分为三步:

  • 1)创建Request对象。
    • 因为是创建索引库的操作,因此Request是CreateIndexRequest
  • 2)添加请求参数
    • 其实就是Json格式的Mapping映射参数。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求
    • client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。例如创建索引、删除索引、判断索引是否存在等

那么我们看试一下是否能创建成功索引库

    @Test
    void testCreateIndex() throws IOException {
        CreateIndexRequest request = new CreateIndexRequest("items");
        // 2.准备请求参数
        request.source(MAPPING_TEMPLATE, XContentType.JSON);
        client.indices().create(request, RequestOptions.DEFAULT);
    }

    private final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"stock\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"image\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"category\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"sold\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"commentCount\":{\n" +
            "        \"type\": \"integer\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"isAD\":{\n" +
            "        \"type\": \"boolean\"\n" +
            "      },\n" +
            "      \"updateTime\":{\n" +
            "        \"type\": \"date\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";

image-20240504120346566

这里的MAPPING_TEMPLATE代表了你索引库的映射,这里我们用代码和图形化分别查一下

代码查询

    @Test
    void testGetIndex() throws IOException {
        GetIndexRequest request = new GetIndexRequest("items");
        client.indices().get(request,RequestOptions.DEFAULT);
    }

image-20240504121615037

删除索引库

删除索引库的请求非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。流程如下:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参,因此省略
  • 3)发送请求。改用delete方法

item-service中的IndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("items");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

image-20240504115608452

判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的请求语句是:

GET /hotel

因此与删除的Java代码流程是类似的,流程如下:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参,直接省略
  • 3)发送请求。改用exists方法
@Test
void testExistsIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("items");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

8.RestClient操作文档

索引库准备好以后,就可以操作文档了。为了与索引库操作分离,我们再次创建一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的商品数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package com.hmall.item.domain.po;

import io.swagger.annotations.ApiModel;
import io.swagger.annotations.ApiModelProperty;
import lombok.Data;

import java.time.LocalDateTime;

@Data
@ApiModel(description = "索引库实体")
public class ItemDoc{

    @ApiModelProperty("商品id")
    private String id;

    @ApiModelProperty("商品名称")
    private String name;

    @ApiModelProperty("价格(分)")
    private Integer price;

    @ApiModelProperty("商品图片")
    private String image;

    @ApiModelProperty("类目名称")
    private String category;

    @ApiModelProperty("品牌名称")
    private String brand;

    @ApiModelProperty("销量")
    private Integer sold;

    @ApiModelProperty("评论数")
    private Integer commentCount;

    @ApiModelProperty("是否是推广广告,true/false")
    private Boolean isAD;

    @ApiModelProperty("更新时间")
    private LocalDateTime updateTime;
}

查询文档

我们以根据id查询文档为例

我们导入商品数据,除了参考API模板“三步走”以外,还需要做几点准备工作:

  • 商品数据来自于数据库,我们需要先查询出来,得到Item对象
  • Item对象需要转为ItemDoc对象
  • ItemDTO需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询商品数据Item
  • 2)将Item封装为ItemDoc
  • 3)将ItemDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询商品数据
    Item item = itemService.getById(100002644680L);
    // 2.转换为文档类型
    ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
    // 3.将ItemDTO转json
    String doc = JSONUtil.toJsonStr(itemDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("items").id(itemDoc.getId());
    // 2.准备Json文档
    request.source(doc, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

image-20240507170615159

语法说明

查询的请求语句如下:

GET /{索引库名}/_doc/{id}

image-20240507121128647

删除文档

删除的请求语句如下:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是2步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参,直接省略
  • 3)发送请求。因为是删除,所以是client.delete()方法

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request,两个参数,第一个是索引库名,第二个是文档id
    DeleteRequest request = new DeleteRequest("item", "100002644680");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

image-20240507170758207

修改文档

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 局部修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注局部修改的API即可。

语法说明

局部修改的请求语法如下:

POST /{索引库名}/_update/{id}
{
  "doc": {
    "字段名": "字段值",
    "字段名": "字段值"
  }
}

代码示例如图:

image-20240507170913172

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

完整代码

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("items", "100002644680");
    // 2.准备请求参数
    request.doc(
            "price", 58800,
            "commentCount", 1
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

image-20240507171354934

image-20240507171410875

批量导入文档

在之前的案例中,我们都是操作单个文档。而数据库中的商品数据实际会达到数十万条,某些项目中可能达到数百万条。

我们如果要将这些数据导入索引库,肯定不能逐条导入,而是采用批处理方案。常见的方案有:

  • 利用Logstash批量导入
    • 需要安装Logstash
    • 对数据的再加工能力较弱
    • 无需编码,但要学习编写Logstash导入配置
  • 利用JavaAPI批量导入
    • 需要编码,但基于JavaAPI,学习成本低
    • 更加灵活,可以任意对数据做再加工处理后写入索引库

接下来,我们就学习下如何利用JavaAPI实现批量文档导入。

语法说明

批处理与前面讲的文档的CRUD步骤基本一致:

  • 创建Request,但这次用的是BulkRequest
  • 准备请求参数
  • 发送请求,这次要用到client.bulk()方法

BulkRequest本身其实并没有请求参数,其本质就是将多个普通的CRUD请求组合在一起发送。例如:

  • 批量新增文档,就是给每个文档创建一个IndexRequest请求,然后封装到BulkRequest中,一起发出。
  • 批量删除,就是创建N个DeleteRequest请求,然后封装到BulkRequest,一起发出

因此BulkRequest中提供了add方法,用以添加其它CRUD的请求:

image-20240507171446846

可以看到,能添加的请求有:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

@Test
void testBulk() throws IOException {
    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备请求参数
    request.add(new IndexRequest("items").id("1").source("json doc1", XContentType.JSON));
    request.add(new IndexRequest("items").id("2").source("json doc2", XContentType.JSON));
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

完整代码

当我们要导入商品数据时,由于商品数量达到数十万,因此不可能一次性全部导入。建议采用循环遍历方式,每次导入1000条左右的数据。

item-serviceDocumentTest测试类中,编写单元测试:

@Test
void testLoadItemDocs() throws IOException {
    // 分页查询商品数据
    int pageNo = 1;
    int size = 1000;
    while (true) {
        Page<Item> page = itemService.lambdaQuery().eq(Item::getStatus, 1).page(new Page<Item>(pageNo, size));
        // 非空校验
        List<Item> items = page.getRecords();
        if (CollUtils.isEmpty(items)) {
            return;
        }
        log.info("加载第{}页数据,共{}条", pageNo, items.size());
        // 1.创建Request
        BulkRequest request = new BulkRequest("items");
        // 2.准备参数,添加多个新增的Request
        for (Item item : items) {
            // 2.1.转换为文档类型ItemDTO
            ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
            // 2.2.创建新增文档的Request对象
            request.add(new IndexRequest()
                            .id(itemDoc.getId())
                            .source(JSONUtil.toJsonStr(itemDoc), XContentType.JSON));
        }
        // 3.发送请求
        client.bulk(request, RequestOptions.DEFAULT);

        // 翻页
        pageNo++;
    }
}

image-20240507183321790

9.DSL查询

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)语句来定义查询条件,其JavaAPI就是在组织DSL条件。

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。
  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

在查询以后,还可以对查询的结果做处理

包括:

  • 排序:按照1个或多个字段值做排序
  • 分页:根据from和size做分页,类似MySQL
  • 高亮:对搜索结果中的关键字添加特殊样式,使其更加醒目
  • 聚合:对搜索结果做数据统计以形成报表

快速入门

我们依然在Kibana的DevTools中学习查询的DSL语法。首先来看查询的语法结构:

GET /{索引库名}/_search
{
  "query": {
    "查询类型": {
      // .. 查询条件
    }
  }
}

说明:

  • GET /{索引库名}/_search:其中的_search是固定路径,不能修改

例如,我们以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:

GET /items/_search
{
  "query": {
    "match_all": {
      
    }
  }
}

由于match_all无条件,所以条件位置不写即可。

执行结果如下:

image-20240507183626167

你会发现虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

叶子查询

叶子查询的类型也可以做进一步细分,详情大家可以查看官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/query-dsl.html

如图:

image-20240507183655492

这里列举一些常见的,例如:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:
    • match
    • multi_match
  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:
    • ids
    • term
    • range
  • **地理坐标查询:**用于搜索地理位置,搜索方式很多,例如:
    • geo_bounding_box:按矩形搜索
    • geo_distance:按点和半径搜索
  • …略

全文检索查询

全文检索的种类也很多,详情可以参考官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/full-text-queries.html

以全文检索中的match为例,语法如下:

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

示例:

image-20240507184419208

match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}

示例:

image-20240507184924383

精确查询

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。例如:

  • id
  • price
  • 城市
  • 地名
  • 人名

等等,作为一个整体才有含义的字段。

详情可以查看官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/term-level-queries.html

term查询为例,其语法如下:

GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

示例:

image-20240507191738496

复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如
    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:
    • function_score
    • dis_max

其它复合查询及相关语法可以参考官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/compound-queries.html

算分函数查询

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分_score),返回结果时按照分值降序排列。

例如,我们搜索 “拉杆箱”,结果如下:

image-20240507192001714

从elasticsearch5.1开始,采用的相关性打分算法是BM25算法,公式如下:

image-20240507192013074

基于这套公式,就可以判断出某个文档与用户搜索的关键字之间的关联度,还是比较准确的。但是,在实际业务需求中,常常会有竞价排名的功能。不是相关度越高排名越靠前,而是掏的钱多的排名靠前。

例如在百度中搜索Java培训,排名靠前的就是广告推广:

image-20240507192222303

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

基本语法

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

示例:给IPhone这个品牌的手机算分提高十倍,分析如下:

  • 过滤条件:品牌必须为IPhone
  • 算分函数:常量weight,值为10
  • 算分模式:相乘multiply

对应代码如下:

image-20240507193132090

示例

需求:给“SCOGOLF”这个品牌的行李箱排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “SCOGOLF”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

完整代码

GET /items/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "name": "行李箱"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "brand": "拉杆箱"
            }
          },
          "weight": 10
          
        }
      ],
      "boost_mode": "sum"
    }
  }
}

测试,在未添加算分函数时,SCOGOLF得分如下:

image-20240507194155180

添加了算分函数后,SCOGOLF得分就提升了:

image-20240507194758958

bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

bool查询的语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

出于性能考虑,与搜索关键字无关的查询尽量采用must_not或filter逻辑运算,避免参与相关性算分。

例如黑马商城的搜索页面:

image-20240507194933835

其中输入框的搜索条件肯定要参与相关性算分,可以采用match。但是价格范围过滤、品牌过滤、分类过滤等尽量采用filter,不要参与相关性算分。

比如,我们要搜索手机,但品牌必须是华为,价格必须是900~1599,那么可以这样写:

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "filter": [
        {"term": {"brand": { "value": "华为" }}},
        {"range": {"price": {"gte": 90000, "lt": 159900}}}
      ]
    }
  }
}

image-20240507195026066

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

详细说明可以参考官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/sort-search-results.html

语法说明:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "排序字段": {
        "order": "排序方式asc和desc"
      }
    }
  ]
}

示例,我们按照商品价格排序:

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

image-20240507195202962

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。

基础分页

elasticsearch中通过修改fromsize参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

官方文档如下:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html

语法如下:

GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

image-20240507195345385

深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。

比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。那么分页查询的条件如下:

GET /items/_search
{
  "from": 990, // 从第990条开始查询
  "size": 10, // 每页查询10条
  "sort": [
    {
      "price": "asc"
    }
  ]
}

从语句来分析,要查询第990~1000名的数据。

从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。但问题来了,我们如何才能找到所有数据中的前1000名呢?

要知道每一片的数据都不一样,第1片上的第9001000,在另1个节点上并不一定依然是9001000名。所以我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~1000的数据即可。

如图:

image-20240507195444933

试想一下,假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?

由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。

因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

详情见文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/paginate-search-results.html

image-20240507200103474

总结:

大多数情况下,我们采用普通分页就可以了。查看百度、京东等网站,会发现其分页都有限制。例如百度最多支持77页,每页不足20条。京东最多100页,每页最多60条。

因此,一般我们采用限制分页深度的方式即可,无需实现深度分页。

高亮

高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

image-20240507200612842

观察页面源码,你会发现两件事情:

  • 高亮词条都被加了<em>标签
  • <em>标签都添加了红色样式

css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。

因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的

因此实现高亮的思路就是:

  • 用户输入搜索关键字搜索数据
  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签
  • 前端提前给约定好的html标签添加CSS样式

实现高亮

事实上elasticsearch已经提供了给搜索关键字加标签的语法,无需我们自己编码。

基本语法如下:

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

注意

  • 搜索必须有查询条件,而且是全文检索类型的查询条件,例如match
  • 参与高亮的字段必须是text类型的字段
  • 默认情况下参与高亮的字段要与搜索字段一致,除非添加:required_field_match=false

示例

image-20240507201035590

10.RestClient查询

文档的查询依然使用昨天学习的 RestHighLevelClient对象,查询的基本步骤如下:

  • 1)创建request对象,这次是搜索,所以是SearchRequest
  • 2)准备请求参数,也就是查询DSL对应的JSON参数
  • 3)发起请求
  • 4)解析响应,响应结果相对复杂,需要逐层解析

快速入门

文档搜索的基本步骤是:

  1. 创建SearchRequest对象
  2. 准备request.source(),也就是DSL。
    1. QueryBuilders来构建查询条件
    2. 传入request.source()query()方法
  3. 发送请求,得到结果
  4. 解析结果(参考JSON结果,从外到内,逐层解析)

之前说过,由于Elasticsearch对外暴露的接口都是Restful风格的接口,因此JavaAPI调用就是在发送Http请求。而我们核心要做的就是利用利用Java代码组织请求参数解析响应结果

这个参数的格式完全参考DSL查询语句的JSON结构,因此我们在学习的过程中,会不断的把JavaAPI与DSL语句对比。大家在学习记忆的过程中,也应该这样对比学习。

发送请求

首先以match_all查询为例,其DSL和JavaAPI的对比如图:

image-20240507214352930

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
  • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),它构建的就是DSL中的完整JSON参数。其中包含了querysortfromsizehighlight等所有功能:

image-20240507214406897

另一个是QueryBuilders,其中包含了我们学习过的各种叶子查询复合查询等:

image-20240507214418867

解析响应结果

在发送请求以后,得到了响应结果SearchResponse,这个类的结构与我们在kibana中看到的响应结果JSON结构完全一致:

{
    "took" : 0,
    "timed_out" : false,
    "hits" : {
        "total" : {
            "value" : 2,
            "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
            {
                "_index" : "heima",
                "_type" : "_doc",
                "_id" : "1",
                "_score" : 1.0,
                "_source" : {
                "info" : "Java讲师",
                "name" : "赵云"
                }
            }
        ]
    }
}

因此,我们解析SearchResponse的代码就是在解析这个JSON结果,对比如下:

image-20240508150312740

代码解读

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化并打印
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        System.out.println(item);
    }
}

image-20240508150355151

叶子查询

所有的查询条件都是由QueryBuilders来构建的,叶子查询也不例外。因此整套代码中变化的部分仅仅是query条件构造的方式,其它不动。

例如match查询:

@Test
void testMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchQuery("name", "行李箱"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

image-20240508150557021

再比如multi_match查询:

@Test
void testMultiMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

还有range查询:

@Test
void testRange() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

还有term查询:

@Test
void testTerm() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.termQuery("brand", "华为"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

复合查询

复合查询也是由QueryBuilders来构建,我们以bool查询为例,DSL和JavaAPI的对比如图:

image-20240508150702194

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.准备bool查询
    BoolQueryBuilder bool = QueryBuilders.boolQuery();
    // 2.2.关键字搜索
    bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.3.品牌过滤
    bool.filter(QueryBuilders.termQuery("brand", "德亚"));
    // 2.4.价格过滤
    bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
    request.source().query(bool);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

image-20240508152043831

排序和分页

之前说过,requeset.source()就是整个请求JSON参数,所以排序、分页都是基于这个来设置,其DSL和JavaAPI的对比如下:

image-20240508152058532

完整示例代码:

@Test
void testPageAndSort() throws IOException {
    int pageNo = 1, pageSize = 5;

    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.搜索条件参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.排序参数
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页参数
    request.source().from((pageNo - 1) * pageSize).size(pageSize);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

image-20240508152437950

高亮

高亮查询与前面的查询有两点不同:

  • 条件同样是在request.source()中指定,只不过高亮条件要基于HighlightBuilder来构造
  • 高亮响应结果与搜索的文档结果不在一起,需要单独解析

首先来看高亮条件构造,其DSL和JavaAPI的对比如图:

image-20240508152451439

示例代码如下:

@Test
void testHighlight() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.query条件
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.高亮条件
    request.source().highlighter(
            SearchSourceBuilder.highlight()
                    .field("name")
                    .preTags("<em>")
                    .postTags("</em>")
    );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

image-20240508153238223

再来看结果解析,文档解析的部分不变,主要是高亮内容需要单独解析出来,其DSL和JavaAPI的对比如图:

image-20240508152517098

代码解读:

  • 3、4步:从结果中获取_sourcehit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象
  • 5步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 5.1步:从Map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 5.2步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 最后:用高亮的结果替换ItemDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        // 5.获取高亮结果
        Map<String, HighlightField> hfs = hit.getHighlightFields();
        if (CollUtils.isNotEmpty(hfs)) {
            // 5.1.有高亮结果,获取name的高亮结果
            HighlightField hf = hfs.get("name");
            if (hf != null) {
                // 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
                String hfName = hf.getFragments()[0].string();
                item.setName(hfName);
            }
        }
        System.out.println(item);
    }
}

11.数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/7.12/search-aggregations.html

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组
  • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
  • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等
  • Avg:求平均值
  • Max:求最大值
  • Min:求最小值
  • Stats:同时求maxminavgsum
  • **管道(pipeline)**聚合:其它聚合的结果为基础做进一步运算

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

DSL实现聚合

与之前的搜索功能类似,我们依然先学习DSL的语法,再学习JavaAPI.

Bucket聚合

例如我们要统计所有商品中共有哪些商品分类,其实就是以分类(category)字段对数据分组。category值一样的放在同一组,属于Bucket聚合中的Term聚合。

基本语法如下:

GET /items/_search
{
  "size": 0, 
  "aggs": {
    "category_agg": {
      "terms": {
        "field": "category",
        "size": 20
      }
    }
  }
}

语法说明:

  • size:设置size为0,就是每页查0条,则结果中就不包含文档,只包含聚合
  • aggs:定义聚合
    • category_agg:聚合名称,自定义,但不能重复
      • terms:聚合的类型,按分类聚合,所以用term
        • field:参与聚合的字段名称
        • size:希望返回的聚合结果的最大数量

来看下查询的结果:

带条件聚合

默认情况下,Bucket聚合是对索引库的所有文档做聚合,例如我们统计商品中所有的品牌,结果如下:

image-20240508155226703

可以看到统计出的品牌非常多。

但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

例如,我想知道价格高于3000元的手机品牌有哪些,该怎么统计呢?

我们需要从需求中分析出搜索查询的条件和聚合的目标:

  • 搜索查询条件:
    • 价格高于3000
    • 必须是手机
  • 聚合目标:统计的是品牌,肯定是对brand字段做term聚合

语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

聚合结果如下:

image-20240508155335385

可以看到,结果中只剩下3个品牌了。

Metric聚合

上节课,我们统计了价格高于3000的手机品牌,形成了一个个桶。现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。

这就要用到Metric聚合了,例如stat聚合,就可以同时获取minmaxavg等结果。

语法如下:

GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      },
      "aggs": {
        "stats_meric": {
          "stats": {
            "field": "price"
          }
        }
      }
    }
  }
}

query部分就不说了,我们重点解读聚合部分语法。

可以看到我们在brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。

  • stats_meric:聚合名称
    • stats:聚合类型,stats是metric聚合的一种
      • field:聚合字段,这里选择price,统计价格

由于stats是对brand_agg形成的每个品牌桶内文档分别做统计,因此每个品牌都会统计出自己的价格最小、最大、平均值。

结果如下:

image-20240508155710777

另外,我们还可以让聚合按照每个品牌的价格平均值排序:

image-20240508155835158

总结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

RestClient实现聚合

可以看到在DSL中,aggs聚合条件与query条件是同一级别,都属于查询JSON参数。因此依然是利用request.source()方法来设置。

不过聚合条件的要利用AggregationBuilders这个工具类来构造。DSL与JavaAPI的语法对比如下:

image-20240508155859272

聚合结果与搜索文档同一级别,因此需要单独获取和解析。具体解析语法如下:

image-20240508155921849

完整代码

@Test
void testAgg() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.准备请求参数
    BoolQueryBuilder bool = QueryBuilders.boolQuery()
            .filter(QueryBuilders.termQuery("category", "手机"))
            .filter(QueryBuilders.rangeQuery("price").gte(300000));
    request.source().query(bool).size(0);
    // 3.聚合参数
    request.source().aggregation(
            AggregationBuilders.terms("brand_agg").field("brand").size(5)
    );
    // 4.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 5.解析聚合结果
    Aggregations aggregations = response.getAggregations();
    // 5.1.获取品牌聚合
    Terms brandTerms = aggregations.get("brand_agg");
    // 5.2.获取聚合中的桶
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 5.3.遍历桶内数据
    for (Terms.Bucket bucket : buckets) {
        // 5.4.获取桶内key
        String brand = bucket.getKeyAsString();
        System.out.print("brand = " + brand);
        long count = bucket.getDocCount();
        System.out.println("; count = " + count);
    }
}

image-20240508160435956

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/602887.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ps 滤镜:渲染

Ps菜单&#xff1a;滤镜/渲染 Filter/Render “渲染”子菜单中的滤镜主要用于生成或模拟各种自然和抽象的视觉效果&#xff0c;这些效果通常很难通过传统的摄影或手绘技术实现。这类滤镜能够为设计师和艺术家提供强大的工具&#xff0c;以增强图像的视觉冲击力、创造性或实现特…

11.偏向锁原理及其实战

文章目录 偏向锁原理及其实战1.偏向锁原理2.偏向锁案例代码演示2.1.偏向锁案例代码2.2.1.无锁情况下状态2.1.2.偏向锁状态2.1.3.释放锁后的状态 2.2.偏向锁的膨胀和撤销2.2.1.偏向锁撤销的条件2.2.2.偏向锁的撤销 2.2.3.偏向锁的膨胀 2.3.全局安全点原理和偏向锁撤销性能问题2.…

Electron项目中将CommonJS改成使用ES 模块(ESM)语法preload.js加载报错

问题 将Electron项目原CommonJS语法改成使用ES 模块&#xff08;ESM&#xff09;语法&#xff0c;preload.js一直加载不到&#xff0c;报错如下&#xff1a; VM111 renderer_init:2 Unable to load preload script: D:\Vue\wnpm\electron\preload.js VM111 renderer_init:2 E…

今日刷三题(day11):不同路径的数目(一)+短距离最小路径和+把数字翻译成字符串

题目一&#xff1a;不同路径的数目&#xff08;一&#xff09; 题目描述&#xff1a; 一个机器人在mn大小的地图的左上角&#xff08;起点&#xff09;。机器人每次可以向下或向右移动。机器人要到达地图的右下角&#xff08;终点&#xff09;。可以有多少种不同的路径从起点…

全栈开发之路——前端篇(6)生命周期和自定义hooks

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 第五篇 : 组件…

C#语言基础

一、复杂数据类型 1. 枚举 1.1 基本概念 1.1.1 枚举是什么 枚举是一个被命名的整型常量的集合&#xff0c;一般用它来表示状态、类型等等 1.1.2 申明枚举和申明枚举变量 申明枚举和申明枚举变量是两个概念 申明枚举&#xff1a;相当于是创建一个自定义的枚举类型 申明枚…

十大标准:评价B端系统界面美感度,你看了你也会。

美感和易用是评价B端系统用户体验的最高原则&#xff0c;本期从先从美感角度来分析B端界面 评价B端系统界面美感度的十大标准可以根据设计原则和用户体验来进行评估&#xff0c;以下是一些常见的标准&#xff1a; 一致性 界面元素的风格、布局和交互应该保持一致&#xff0c;…

Flutter连接websocket、实现在线聊天功能

老规矩效果图: 第一步:引入 web_socket_channel: ^2.4.0 第二步:封装 websocket.dart 单例 import dart:async; import dart:convert; import package:web_socket_channel/web_socket_channel.dart; import package:web_socket_channel/io.dart;class WebSocketManager {…

森林消防—高扬程水泵:守护绿色屏障的专业利器/恒峰智慧科技

在广袤的森林中&#xff0c;火灾无疑是最具破坏性的灾难之一。为了及时应对森林火灾&#xff0c;保护珍贵的自然资源和生态平衡&#xff0c;高效的消防设备显得尤为重要。森林消防高扬程水泵便是其中一款专业设备&#xff0c;以其高效输送水源的能力&#xff0c;成为守护森林绿…

Denoising diffusion models for out-of-distribution detection

Denoising diffusion models for out-of-distribution detection 摘要1 介绍2 相关工作2.1 基于生成得方法2.2 基于重构的方法3 方法3.1.扩散模型3.2.多次重建3.3.相似性评估4实验4.1. Experimental details4.2. Results for computer vision datasets4.3医学数据集上的结果4.4…

python 12实验

1.导入数据。 2.清洗数据&#xff0c;将缺失值或“NAN”替换为“无”&#xff0c;并将文本数据转换为数值型数据。 3.使用聚类算法&#xff08;如KMeans&#xff09;对数据进行聚类&#xff0c;并计算样本到簇中心的平均距离以确定最佳的簇数量。 4.对数据进行PCA降维&#xff…

Django Admin后台管理:高效开发与实践

title: Django Admin后台管理&#xff1a;高效开发与实践 date: 2024/5/8 14:24:15 updated: 2024/5/8 14:24:15 categories: 后端开发 tags: DjangoAdmin模型管理用户认证数据优化自定义扩展实战案例性能安全 第1章&#xff1a;Django Admin基础 1.1 Django Admin简介 Dj…

AI预测福彩3D第10套算法实战化赚米验证第1弹2024年5月5日第1次测试

从今天开始&#xff0c;准备启用第10套算法&#xff0c;来验证下本算法的可行性。因为本算法通过近三十期的内测&#xff08;内测版没有公开预测结果&#xff09;&#xff0c;发现本算法的预测结果优于其他所有算法的效果。彩票预测只有实战才能检验是否有效&#xff0c;只有真…

旅游出行大热!景区电话却打不通了?

根据文化和旅游部5月6日发布的数据显示,今年“五一”假期,全国国内旅游出游合计2.95亿人次。 这个数据可以看出出游的热度是非常高的&#xff0c;但有网友表示在旅游的时候遇到糟心的事情&#xff0c;比如无法联系到景区&#xff0c;网友吐槽自己打电话20次仅仅接通了一次&…

前端奇怪面试题总结

面试题总结 不修改下面的代码进行正常解构 这道题考的是迭代器和生成器的概念 let [a,b] {a:1,b:2}答案 对象缺少迭代器&#xff0c;需要手动加上 Object.prototype[Symbol.iterator] function* (){// return Object.values(this)[Symbol.iterator]()return yeild* Object.v…

场外期权个股怎么对冲?

今天期权懂带你了解场外期权个股怎么对冲&#xff1f;场外个股期权是一种在非交易所市场进行的期权交易&#xff0c;它允许投资者针对特定的股票获得未来买入或卖出的权利。 场外期权个股怎么对冲&#xff1f; 持有相反方向的期权&#xff1a;这是最直接的对冲方法&#xff0c…

一分钟教你学浪app视频怎么缓存

你是否在学浪app上苦苦寻找如何缓存视频的方法&#xff1f;你是否想快速、轻松地观看自己喜欢的视频内容&#xff1f;那么&#xff0c;让我们一起探索一分钟教你如何缓存学浪app视频的技巧吧&#xff01; 学浪下载工具我已经打包好了&#xff0c;有需要的自己下载一下 学浪下…

【数据分享】2006—2022年我国城市级别的市政设施水平相关指标(免费获取)

市政公用设施水平&#xff0c;作为衡量一座城市基础设施建设情况的核心指标之一&#xff0c;其完善程度、运行效率以及服务质量&#xff0c;不仅直接关乎城市的日常运转与居民生活质量&#xff0c;更是评估城市综合竞争力、宜居性以及可持续发展能力的关键要素。 我们发现在《…

unity-C#调用百度千帆AppBuilder的OpenApi

目录 功能描述准备工作百度智能云账号创建应用编辑应用创建Api秘钥Api调用流程unity代码Unitywebrequest非流式流式注意事项 Restsharp 功能描述 使用百度千帆AppBuilder平台,通过api调用的方式实现AI大模型对话功能(文字) 准备工作 百度智能云账号 请自行在百度智能云进行…

001_Langchain

LangChain LangChain 是一个开源框架,旨在帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序。它提供了一套工具、组件和接口,以简化创建由这些模型支持的应用程序的过程。LangChain 的核心概念包括组件(Components)、链(Chains)、模型输入/输出(Mode…