基于大数据+Hadoop的豆瓣电子图书推荐系统实现

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄

🌹简历模板、学习资料、面试题库、技术互助

🌹文末获取联系方式 📝

在这里插入图片描述


系列文章目录

基于大数据+Hadoop的豆瓣电子图书推荐系统实现


文章目录

  • 系列文章目录
  • 1、前言介绍
  • 2、功能设计
  • 3、功能实现
  • 库表设计
  • 5、关键代码
  • 6、Lunwen参考
  • 往期热门专栏回顾


1、前言介绍

随着信息技术的飞速发展,特别是互联网和移动通信技术的普及,数字化阅读逐渐成为人们获取知识和信息的重要方式。在这样的背景下,电子图书以其便捷性和丰富性受到了广泛欢迎。随着电子图书市场的不断扩大,书籍的种类和数量也在急剧增加,这为用户挑选书籍带来了挑战。为了解决信息过载的问题,个性化推荐系统应运而生,并逐渐成为在线阅读平台不可或缺的一部分。基于用户历史行为数据进行推荐的协同过滤算法尤为流行。处理庞大的用户群体和海量的图书数据需要强大的计算能力,传统的单机计算模式已无法满足需求。Hadoop作为一个开源的分布式计算平台,以其高容错性、高扩展性和对大数据处理的优秀能力,成为大数据分析的首选工具。因此,利用Hadoop来构建电子图书推荐系统,不仅可以有效处理和分析大规模数据集,提升推荐质量,还能保证系统的可扩展性和稳定性。

在这里插入图片描述
基于Hadoop的豆瓣电子图书推荐系统的研究与实现能够为用户提供更加精准和个性化的阅读推荐,从而优化用户体验,提高用户满意度和平台黏性。通过分析用户的历史阅读行为和偏好,系统可以发现用户的阅读模式,进而推荐更符合个人兴趣的书籍,帮助用户节省筛选时间,增强阅读效率。对于电子图书平台来说,一个高效的推荐系统可以促进更多优质内容的分发,增加用户流量和书籍销量,从而带动平台的经济效益。该系统的建立还有助于推动数据挖掘和机器学习技术在实际应用中的发展,为相关领域提供宝贵的实践经验和研究成果。最后,随着数据处理技术的不断进步,该研究还可以为未来电子图书推荐系统的改进提供理论基础和技术支持,具有长远的研究和应用价值。

2、功能设计

系统的功能设计是整个系统的运行基础,是一个把设计需求替换成以计算机系统的形式表示出来。通过对豆瓣电子图书推荐系统的调查、分析和研究,得出了该系统的总体规划,这是开发设计系统的初步核心。如下图所示:
在这里插入图片描述
爬虫数据集展示:
在这里插入图片描述

3、功能实现

在这里插入图片描述
当人们打开系统的网址后,首先看到的就是首页界面。在这里,人们能够看到系统的导航条,通过导航条导航进入各功能展示页面进行操作。系统首页界面如图5-1所示:
在这里插入图片描述
在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Java后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。注册页面如图5-2所示:
在这里插入图片描述

图5-2注册详细页面

豆瓣高分:在豆瓣高分页面的输入栏中输入书名、作者、出版社和标签进行查询,可以查看到豆瓣高分详细信息,并进行评论或收藏操作;豆瓣高分页面如图5-3所示:
在这里插入图片描述

图5-3豆瓣高分详细页面

个人中心:在个人中心页面可以对个人中心、修改密码、我的发布、我的收藏等进行详细操作;如图5-4所示:
在这里插入图片描述
在登录流程中,用户首先在Vue前端界面输入用户名和密码。这些信息通过HTTP请求发送到Java后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图5-5所示。

用户管理功能在视图层(view层)进行交互,比如点击“查询、添加或删除”按钮或填写用户信息表单。这些用户表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除用户信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便用户功能可以看到最新的信息或相应的操作反馈。如图5-7所示:
在这里插入图片描述

图5-7用户管理界面

豆瓣高分管理功能在视图层(view层)进行交互,比如点击“查询、添加、删除或爬取数据”按钮或填写豆瓣高分信息表单。这些豆瓣高分表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改、查看评论或删除豆瓣高分信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便豆瓣高分功能可以看到最新的信息或相应的操作反馈。如图5-8所示:
在这里插入图片描述

图5-8豆瓣高分管理界面

管理员进行爬取数据后,点击主页面右上角的看板,可以查看到系统简介、书名、作者统计、价格统计、出版社、评分统计、豆瓣高分总数、豆瓣高分信息等实时的分析图进行可视化管理;如图5-9所示:
在这里插入图片描述

图5-9看板界面

库表设计

表4-11:豆瓣高分
在这里插入图片描述

5、关键代码

# # -*- coding: utf-8 -*-
 
# 数据爬取文件
 
import scrapy
import pymysql
import pymssql
from ..items import DianzitushuItem
import time
from datetime import datetime,timedelta
import datetime as formattime
import re
import random
import platform
import json
import os
import urllib
from urllib.parse import urlparse
import requests
import emoji
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from selenium.webdriver import ChromeOptions, ActionChains
from scrapy.http import TextResponse
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
# 电子图书
class DianzitushuSpider(scrapy.Spider):
    name = 'dianzitushuSpider'
    spiderUrl = 'https://read.douban.com/j/kind/'
    start_urls = spiderUrl.split(";")
    protocol = ''
    hostname = ''
    realtime = False
 
 
    def __init__(self,realtime=False,*args, **kwargs):
        super().__init__(*args, **kwargs)
        self.realtime = realtime=='true'
 
    def start_requests(self):
 
        plat = platform.system().lower()
        if not self.realtime and (plat == 'linux' or plat == 'windows'):
            connect = self.db_connect()
            cursor = connect.cursor()
            if self.table_exists(cursor, '0n4b129m_dianzitushu') == 1:
                cursor.close()
                connect.close()
                self.temp_data()
                return
        pageNum = 1 + 1
 
        for url in self.start_urls:
            if '{}' in url:
                for page in range(1, pageNum):
 
                    next_link = url.format(page)
                    yield scrapy.Request(
                        url=next_link,
                        callback=self.parse
                    )
            else:
                yield scrapy.Request(
                    url=url,
                    callback=self.parse
                )
 
    # 列表解析
    def parse(self, response):
        _url = urlparse(self.spiderUrl)
        self.protocol = _url.scheme
        self.hostname = _url.netloc
        plat = platform.system().lower()
        if not self.realtime and (plat == 'linux' or plat == 'windows'):
            connect = self.db_connect()
            cursor = connect.cursor()
            if self.table_exists(cursor, '0n4b129m_dianzitushu') == 1:
                cursor.close()
                connect.close()
                self.temp_data()
                return
        data = json.loads(response.body)
        try:
            list = data["list"]
        except:
            pass
        for item in list:
            fields = DianzitushuItem()
 
 
            try:
                fields["title"] = emoji.demojize(self.remove_html(str( item["title"] )))
 
            except:
                pass
            try:
                fields["picture"] = emoji.demojize(self.remove_html(str( item["cover"] )))
 
            except:
                pass
            try:
                fields["salesprice"] = float( item["salesPrice"]/100)
            except:
                pass
            try:
                fields["wordcount"] = int( item["wordCount"])
            except:
                pass
            try:
                fields["author"] = emoji.demojize(self.remove_html(str(','.join(str(i['name']) for i in  item["author"]) )))
 
            except:
                pass
            try:
                fields["biaoqian"] = emoji.demojize(self.remove_html(str( item.get("biaoqian", "小说") )))
 
            except:
                pass
            try:
                fields["detailurl"] = emoji.demojize(self.remove_html(str('https://read.douban.com'+ item["url"] )))
 
            except:
                pass
            detailUrlRule = item["url"]
 
            if '["url"]'.startswith('http'):
                if '{0}' in '["url"]':
                    detailQueryCondition = []
                    detailUrlRule = '["url"]'
                    i = 0
                    while i < len(detailQueryCondition):
                        detailUrlRule = detailUrlRule.replace('{' + str(i) + '}', str(detailQueryCondition[i]))
                        i += 1
            else:
                detailUrlRule =item["url"]
 
            detailUrlRule ='https://read.douban.com'+ detailUrlRule
 
            if detailUrlRule.startswith('http') or self.hostname in detailUrlRule:
                pass
            else:
                detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRule
                fields["laiyuan"] = detailUrlRule
            yield scrapy.Request(url=detailUrlRule, meta={'fields': fields}, callback=self.detail_parse)
 
    # 详情解析
    def detail_parse(self, response):
        fields = response.meta['fields']
        try:
            if '(.*?)' in '''span[itemprop="genre"]::text''':
                fields["genre"] = str( re.findall(r'''span[itemprop="genre"]::text''', response.text, re.S)[0].strip())
 
            else:
                if 'genre' != 'xiangqing' and 'genre' != 'detail' and 'genre' != 'pinglun' and 'genre' != 'zuofa':
                    fields["genre"] = str( self.remove_html(response.css('''span[itemprop="genre"]::text''').extract_first()))
 
                else:
                    try:
                        fields["genre"] = str( emoji.demojize(response.css('''span[itemprop="genre"]::text''').extract_first()))
 
                    except:
                        pass
        except:
            pass
        try:
            fields["chubanshe"] = str( response.xpath('''//span[text()="出版社"]/../span[@class="labeled-text"]/span[1]/text()''').extract()[0].strip())
 
        except:
            pass
        try:
            fields["cbsj"] = str( response.xpath('''//span[text()="出版社"]/../span[@class="labeled-text"]/span[2]/text()''').extract()[0].strip())
 
        except:
            pass
        try:
            if '(.*?)' in '''a[itemprop="provider"]::text''':
                fields["provider"] = str( re.findall(r'''a[itemprop="provider"]::text''', response.text, re.S)[0].strip())
 
            else:
                if 'provider' != 'xiangqing' and 'provider' != 'detail' and 'provider' != 'pinglun' and 'provider' != 'zuofa':
                    fields["provider"] = str( self.remove_html(response.css('''a[itemprop="provider"]::text''').extract_first()))
 
                else:
                    try:
                        fields["provider"] = str( emoji.demojize(response.css('''a[itemprop="provider"]::text''').extract_first()))
 
                    except:
                        pass
        except:
            pass
        try:
            if '(.*?)' in '''span.score::text''':
                fields["score"] = float( re.findall(r'''span.score::text''', response.text, re.S)[0].strip())
            else:
                if 'score' != 'xiangqing' and 'score' != 'detail' and 'score' != 'pinglun' and 'score' != 'zuofa':
                    fields["score"] = float( self.remove_html(response.css('''span.score::text''').extract_first()))
                else:
                    try:
                        fields["score"] = float( emoji.demojize(response.css('''span.score::text''').extract_first()))
                    except:
                        pass
        except:
            pass
        try:
            if '(.*?)' in '''span.amount::text''':
                fields["pingjiashu"] = int( re.findall(r'''span.amount::text''', response.text, re.S)[0].strip().replace('评价',''))
            else:
                if 'pingjiashu' != 'xiangqing' and 'pingjiashu' != 'detail' and 'pingjiashu' != 'pinglun' and 'pingjiashu' != 'zuofa':
                    fields["pingjiashu"] = int( self.remove_html(response.css('''span.amount::text''').extract_first()).replace('评价',''))
                else:
                    try:
                        fields["pingjiashu"] = int( emoji.demojize(response.css('''span.amount::text''').extract_first()).replace('评价',''))
                    except:
                        pass
        except:
            pass
        return fields
 
    # 数据清洗
    def pandas_filter(self):
        engine = create_engine('mysql+pymysql://root:123456@localhost/spider0n4b129m?charset=UTF8MB4')
        df = pd.read_sql('select * from dianzitushu limit 50', con = engine)
 
        # 重复数据过滤
        df.duplicated()
        df.drop_duplicates()
 
        #空数据过滤
        df.isnull()
        df.dropna()
 
        # 填充空数据
        df.fillna(value = '暂无')
 
        # 异常值过滤
 
        # 滤出 大于800 和 小于 100 的
        a = np.random.randint(0, 1000, size = 200)
        cond = (a<=800) & (a>=100)
        a[cond]
 
        # 过滤正态分布的异常值
        b = np.random.randn(100000)
        # 3σ过滤异常值,σ即是标准差
        cond = np.abs(b) > 3 * 1
        b[cond]
 
        # 正态分布数据
        df2 = pd.DataFrame(data = np.random.randn(10000,3))
        # 3σ过滤异常值,σ即是标准差
        cond = (df2 > 3*df2.std()).any(axis = 1)
        # 不满⾜条件的⾏索引
        index = df2[cond].index
        # 根据⾏索引,进⾏数据删除
        df2.drop(labels=index,axis = 0)
 
    # 去除多余html标签
    def remove_html(self, html):
        if html == None:
            return ''
        pattern = re.compile(r'<[^>]+>', re.S)
        return pattern.sub('', html).strip()
 
    # 数据库连接
    def db_connect(self):
        type = self.settings.get('TYPE', 'mysql')
        host = self.settings.get('HOST', 'localhost')
        port = int(self.settings.get('PORT', 3306))
        user = self.settings.get('USER', 'root')
        password = self.settings.get('PASSWORD', '123456')
 
        try:
            database = self.databaseName
        except:
            database = self.settings.get('DATABASE', '')
 
        if type == 'mysql':
            connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
        else:
            connect = pymssql.connect(host=host, user=user, password=password, database=database)
        return connect
 
    # 断表是否存在
    def table_exists(self, cursor, table_name):
        cursor.execute("show tables;")
        tables = [cursor.fetchall()]
        table_list = re.findall('(\'.*?\')',str(tables))
        table_list = [re.sub("'",'',each) for each in table_list]
 
        if table_name in table_list:
            return 1
        else:
            return 0
 
    # 数据缓存源
    def temp_data(self):
 
        connect = self.db_connect()
        cursor = connect.cursor()
        sql = '''
            insert into `dianzitushu`(
                id
                ,title
                ,picture
                ,salesprice
                ,wordcount
                ,author
                ,biaoqian
                ,detailurl
                ,genre
                ,chubanshe
                ,cbsj
                ,provider
                ,score
                ,pingjiashu
            )
            select
                id
                ,title
                ,picture
                ,salesprice
                ,wordcount
                ,author
                ,biaoqian
                ,detailurl
                ,genre
                ,chubanshe
                ,cbsj
                ,provider
                ,score
                ,pingjiashu
            from `0n4b129m_dianzitushu`
            where(not exists (select
                id
                ,title
                ,picture
                ,salesprice
                ,wordcount
                ,author
                ,biaoqian
                ,detailurl
                ,genre
                ,chubanshe
                ,cbsj
                ,provider
                ,score
                ,pingjiashu
            from `dianzitushu` where
                `dianzitushu`.id=`0n4b129m_dianzitushu`.id
            ))
            order by rand()
            limit 50;
        '''
 
        cursor.execute(sql)
        connect.commit()
        connect.close()

6、Lunwen参考

在这里插入图片描述
在这里插入图片描述


往期热门专栏回顾

专栏描述
Java项目实战介绍Java组件安装、使用;手写框架等
Aws服务器实战Aws Linux服务器上操作nginx、git、JDK、Vue
Java微服务实战Java 微服务实战,Spring Cloud Netflix套件、Spring Cloud Alibaba套件、Seata、gateway、shadingjdbc等实战操作
Java基础篇Java基础闲聊,已出HashMap、String、StringBuffer等源码分析,JVM分析,持续更新中
Springboot篇从创建Springboot项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回、全局异常处理、Swagger文档
Spring MVC篇从创建Spring MVC项目,到加载数据库、静态资源、输出RestFul接口、跨越问题解决到统一返回
华为云服务器实战华为云Linux服务器上操作nginx、git、JDK、Vue等,以及使用宝塔运维操作添加Html网页、部署Springboot项目/Vue项目等
Java爬虫通过Java+Selenium+GoogleWebDriver 模拟真人网页操作爬取花瓣网图片、bing搜索图片等
Vue实战讲解Vue3的安装、环境配置,基本语法、循环语句、生命周期、路由设置、组件、axios交互、Element-ui的使用等
Spring讲解Spring(Bean)概念、IOC、AOP、集成jdbcTemplate/redis/事务等

资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/602070.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

组合模式(Composite)——结构型模式

组合模式(Composite)——结构型模式 组合模式是一种结构型设计模式&#xff0c; 你可以使用它将对象组合成树状结构&#xff0c; 并且能通过通用接口像独立整体对象一样使用它们。如果应用的核心模型能用树状结构表示&#xff0c; 在应用中使用组合模式才有价值。 例如一个场景…

新能源汽车充电站智慧充电电能服务综合解决方案

安科瑞薛瑶瑶18701709087/17343930412 ★解决方案 ✔目的地充电-EMS微电网平台 基于EMS解决方案从设备运维的角度解决本地充电的能量管理及运维问题&#xff0c;与充电管理平台打通数据&#xff0c;为企业微电网提供源、网、荷、储、充一体化解决方案。 ✔运营场站--电能服务…

​「Python绘图」绘制太极图

python 绘制太极 一、预期结果 二、核心代码 import turtlepen turtle.Turtle()print("开始绘制太极")radius 100 pen.color("black", "black") pen.begin_fill() pen.circle(radius/2, 180) pen.circle(radius, 180) pen.left(180) pen.circ…

英语口语情景对话视频软件分享!

在当今全球化的时代&#xff0c;英语已成为一种通用的国际语言。为了提高英语口语能力&#xff0c;越来越多的人选择使用英语口语情景对话视频软件。本文将为您推荐几款备受欢迎的英语口语情景对话视频软件&#xff0c;帮助您轻松提高英语口语水平。 AI外语陪练 AI外语陪练软件…

营养补充品软胶囊:弹性测试与市场表现的深度解析

营养补充品软胶囊&#xff1a;弹性测试与市场表现的深度解析 在追求健康生活的时代&#xff0c;营养补充品市场蓬勃发展&#xff0c;其中软胶囊作为一种方便、易吸收的剂型&#xff0c;受到了消费者的广泛欢迎。然而&#xff0c;在这个竞争激烈的市场中&#xff0c;如何确保产…

推荐5个AI工具平替GPT

随着AI技术的快速发展&#xff0c;AI写作正成为创作的新风口。但是面对GPT-4这样的国际巨头&#xff0c;国内很多小伙伴往往望而却步&#xff0c;究其原因&#xff0c;就是它的使用门槛高&#xff0c;还有成本的考量。 不过&#xff0c;随着GPT技术的火热&#xff0c;国内也涌…

window11事件查看器中“在事件中只要触发此事件,就会执行相关非XX.xml脚本”

在事件中只要触发此事件&#xff0c;就会执行相关非XX.xml脚本 一、操作过程 1、在时间查看器中&#xff0c;将任务附加到此事件上 2、按照提示逐步下一步添加完成 3、只要触发1中的事件&#xff0c;那么就会执行对应的关联脚本xx.xml。 二、解决办法 1、通过开始菜单搜索打…

riscv交叉编译ports软件@FreeBSD15

当前FreeBSD的riscv版本下&#xff0c;软件包还很贫乏&#xff0c;再加上RISCV的板子有很多种&#xff0c;大部分时候都需要自己动手编译。但是在RISCV环境下编译太慢了&#xff0c;所以我们要使用交叉编译&#xff0c;在很快的AMD64服务器上交叉编译RISCV的软件包。 这里使用…

Promise魔鬼面试题

文章目录 题目解析难点分析分析输出step1step2step3step4step5step6 参考/致谢&#xff1a;渡一袁老师 题目 Promise.resolve().then(() > {console.log(0);return Promise.resolve(4);}).then((res) > {console.log(res);});Promise.resolve().then(() > {console.l…

基于FPGA的数字信号处理(10)--定点数的舍入模式(1)四舍五入round

1、前言 将浮点数定量化为定点数时&#xff0c;有一个避不开的问题&#xff1a;某些小数是无法用有限个数的2进制数来表示的。比如&#xff1a; 0.5(D) 0.1(B) 0.1(D) 0.0001100110011001~~~~(B) 可以看到0.5是可以精准表示的&#xff0c;但是0.1却不行。原因是整数是离散的…

AngusTester安装请求代理

一、介绍 请求代理程序(AngusProxy)提供两个方面作用&#xff1a; 代理Http和WebSocket协议接口调试请求&#xff0c;解决浏览器跨域限制问题。对代理请求客户化处理支持&#xff0c;允许用户对代理请求进行二次处理&#xff0c;如&#xff1a;请求参数签名。 二、类型 为了…

【经验01】spark执行离线任务的一些坑

项目背景: 目前使用spark跑大体量的数据,效率还是挺高的,机器多,120多台的hadoop集群,还是相当的给力的。数据大概有10T的量。 最近在出月报数据的时候发现有一个任务节点一直跑不过去,已经超过失败次数的阈值,报警了。 预警很让人头疼,不能上班摸鱼了。 经过分析发现…

多个glibc库存在时如何查看ldd调用的哪个

但是发现存在多个版本的glibc版本&#xff0c;需要查看具体的库的信息&#xff0c;和相应的关键函数的信息&#xff0c;但是并不知道具体的libc.so.6的路径信息 rootalg-dev04:~/xingqiao# ldd --version ldd (GNU libc) 2.29 rootalg-dev04:/opt# which ldd /usr/local/bin/…

工厂自动化升级改造(2)-RS485与Modbus通信协议

在工业控制、电力通信、智能仪表等领域,数据交换通常依赖于串口通信。最初,RS232接口是主流选择,然而,由于工业现场的复杂性,各种电气设备产生的电磁干扰可能导致信号传输错误。 RS232和RS485是两种不同的串行通信协议,它们在电气特性、传输距离和拓扑结构等方面有所不同…

基于springboot的篮球联盟管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

长难句打卡5.8

If it is trying to upset Google, which relies almost wholly on advertising, it has chosen an indirect method: there is no guarantee that DNT by default will become the norm. 如果它想激怒几乎全靠广告业务运营的谷歌公司的话&#xff0c;那么它选择了一个间接的方…

目标检测CNN 目标检测发展历程 应用场景 智慧交通 自动驾驶 工业生产 智慧医疗

目标检测 目标检测是计算机视觉领域中的一个重要任务,其主要目的是让计算机能够自动识别图像或视频帧中所有目标的类别,并在目标周围绘制边界框以标示出每个目标的位置。 目标检测的过程通常包括两个主要步骤:目标定位和目标分类。目标定位是确定图像中是否存在感兴趣的目…

【功耗问题排查】

一、如何处理具体功耗case 在手机功耗测试中&#xff0c;因为我们在功耗测试中&#xff08;电源电压&#xff09;为固定值&#xff08;老手机一般为3.8V左右&#xff0c;现在的大多项目采用4V左右&#xff09;&#xff0c;那么的大小直接由决定&#xff0c;所以&#xff0c;在沟…

在线音视频下载

https://cobalt.tools/ 支持 bilibili 等网站

顺序表的实现(迈入数据结构的大门)(1)

上一节我们认识到了什么是数据结构 这一节我们就来实现第一个数据结构的实现 思考一个问题&#xff1a; 假定一个数组&#xff0c;空间为10&#xff0c;已经使用了5个&#xff0c;向其中插入数据的步骤&#xff1a; 1.插入数据&#xff0c;我们先要求数组长度&#xff0c;其…