ChatGPT即将取代程序员

 

 W...Y的主页

相信ChatGPT大家已经都不陌生,我们经常会在工作和学习中应用。但是ChatGPT的发展速度飞快。功能也越来越全面。ChatGPT的文章也是层次不穷的出现,ChatGPT即将取代程序员的消息也铺天盖地。那ChatGPT真的会取代程序员吗?我们是否应该担心?

目录

什么是ChatGPT

chatgpt的发展历史​编辑

对ChatGPT分析

ChatAI对未来职业影响


我们先了解一下什么是ChatGPT?

什么是ChatGPT

ChatGPT是OpenAI开发的一种基于GPT模型的对话生成系统。它是建立在GPT-3模型及其前身GPT-2的基础上,专门用于处理对话任务。ChatGPT能够接收用户输入并生成合理、连贯的回应,从而模拟自然语言的对话交互。

ChatGPT使用了大规模的预训练数据集来学习语言知识和语言模式。通过在互联网上收集的大量对话数据进行训练,ChatGPT能够理解语义和上下文,并生成适当的回复。它可以与用户进行对话,回答问题、提供建议、提供信息等。

ChatGPT的架构基于Transformer模型,它使用了自注意力机制来处理文本上下文之间的依赖关系。这使得ChatGPT能够对输入的语句进行编码,并在生成回复时利用上下文信息。该模型还训练有参数的生成器,以根据输入生成输出回答。

用通俗的话说:ChatGPT就像是一个聪明的对话机器人,它可以和人们进行对话。你可以向它提问、聊天或寻求建议等,它会给出合理的回答。它通过学习大量的对话数据来训练,这样它就能理解语言的意思,根据上下文生成恰当的回复。
它的工作原理有点像一个巨大的记事本,里面存满了关于语言的知识。当你与它对话时,它会查看这个记事本,并使用它所学到的知识生成回答。它基于之前看到的对话来理解你的问题,并尝试给出最合适的回答。
不过,有时候ChatGPT也会犯错或给出不准确的回答。这可能是因为它没有足够的上下文理解问题,或者记事本中的知识不完整。所以,就像和人对话一样,有些时候ChatGPT的回答可能并不完美。但你可以提供更多信息或重新指导它,以帮助它改进并给出更好的回答。
总的来说,ChatGPT就是一个训练有素的模型,可以进行人机对话,但也要注意它有时候可能会有一些局限性。

chatgpt的发展历史

ChatGPT的发展史可以追溯到OpenAI在2015年发布的第一个版本:基于文本的AI。这是一个基于递归神经网络(RNN)的模型,用于生成文本回复。虽然这个模型在一些任务上表现出色,但它在处理长期依赖和一致性方面存在一些问题。

为了解决这些问题,OpenAI在2018年发布了GPT(Generative Pre-train Transformer)模型的第一个版本。这是基于Transformer架构的模型,它使用了自注意力机制来处理文本上下文之间的长期依赖性。GPT以无监督的方式进行预训练,通过大量的互联网文本数据进行训练,使得模型能够学习到丰富的语言知识。

GPT-2是GPT模型的下一个版本,于2019年发布。它在GPT的基础上做了一些改进,在模型规模和性能方面取得了显著提升。GPT-2具有更多的参数和更深的网络架构,可以生成更长、更连贯的文本回复。由于其强大的生成能力,OpenAI最初决定不完全公开发布GPT-2,担心其滥用可能引发误导和虚假信息的传播。

在2020年,OpenAI又发布了GPT-3。GPT-3是比较完善的版本,具有1750亿个参数,是之前版本的数倍之多。它在多个自然语言处理任务上取得了令人瞩目的结果,并展示出极高的创造力和适应性。GPT-3的神经网络规模和表现使它成为当今最强大的自然语言处理模型之一。

2023年3月15日消息,美国当地时间周二,人工智能研究公司OpenAI发布了其下一代大型语言模型GPT-4,这是其支持ChatGPT和新必应等应用程序的最新AI大型语言模型。该公司表示,该模型在许多专业测试中的表现超出了“人类水平”。GPT-4, 相较于ChatGPT(GPT-3.5)有了质的飞跃,这迭代速度太快了!总体来说,逻辑推理能力更强,语言能力更强,各种考试已经基本超过90%的人类!

对ChatGPT分析

ChatGPT在每一代的更新上都有显著提升:

GPT-1:这是GPT的第一代版本,采用了Transformer架构和自注意力机制。GPT-1在处理长期依赖性和上下文相干性方面表现出色,相较于基于RNN的模型有了显著改进。

GPT-2:GPT-2是GPT的第二代版本,具有更大的模型规模和能力。这个版本具有更多的参数,网络结构更深,并且在生成文本时表现出更强的连贯性和理解能力。GPT-2在各种自然语言处理任务上取得了卓越的成绩,并展示出很强的创造力。

GPT-3:GPT-3是ChatGPT的第三代版本,它具有数十亿个参数,比GPT-2更大,并且被广泛认为是一种非常适应性强的自然语言处理模型。GPT-3在生成长文本、理解复杂问题和对话上展现出了令人惊叹的能力。

GPT-4:GPT-4是第四代版本,也是目前最强最主流的版本,使用了1.5万亿个参数,比上一代增加10倍,相对于GPT-3有了显著的提升。从自然语言处理模型升级为多模态模型,功能也相较于GPT-3增加了看图作答、数据推理、角色扮演等等复杂功能,文字输入长度也从最初的3000字上升到25000字,有了更强大的创造力和适应力。

 通过上图每一代的CPU性能图,我们也可以得到一个有趣且可怕的现象,cpu的性能呈指数型增长,速度非常惊人。

再来说说内存与算力,chatgpt现在的内存大约为几百G,大约有4000亿单词存储量,而对于算力相当于100多个GPU进行计算,那处理速度肯定不容小觑,这些都是我们常人不可想象的能力。

ChatGPT的训练方式分两部分:预训练与微调。

预训练(Pre-training):在这个阶段,模型使用大规模的文本数据集进行无监督的预训练。通常,ChatGPT使用互联网上的海量文本数据来学习语言的知识和模式。预训练的目标是尽可能地让模型学会理解语言,文本的连贯性和上下文的关联。训练过程中使用的技术包括预测下一个词(Next Word Prediction)和掩码语言建模(Masked Language Modeling)等。

微调(Fine-tuning):在预训练完成后,ChatGPT需要经过微调来适应特定的任务或领域。微调阶段使用有监督的学习,模型会接受特定任务的数据集,并根据特定任务的标签进行训练。这个过程可以通过提供示例对话或对模型进行追加训练来调整和改进ChatGPT的回复质量。微调阶段旨在优化模型的性能,并使其在实际对话和任务中表现更好。

 这种学习方式也给予它很多优点:

  1. 无监督学习:ChatGPT使用无监督学习的方法进行训练,这意味着模型可以从大量的未标记数据中学习。与传统的监督学习需要标注数据相比,无监督学习更具可扩展性和成本效益。ChatGPT能够通过对大量文本数据进行自我监督学习,捕捉到底层的语言模式和结构,从而生成流畅、连贯的回应。

  2. 大规模训练:ChatGPT模型通常使用大规模的训练数据集进行训练,例如互联网上的大量文本数据。这样的训练数据规模可以帮助模型学习到更广泛的语言知识和上下文理解能力。

  3. 上下文感知:ChatGPT模型采用了自回归的训练方式,允许对上下文进行建模,从而生成与上下文相关的回复。模型可以通过前面的对话历史来理解用户的意图,并产生相应的回答,在对话中表现出一定的逻辑和一致性。

  4. 灵活性和多样性:ChatGPT是一种生成模型,具有一定的创造性和多样性。它不仅可以生成准确的回答,还可以在一定程度上进行创造性的文本生成。这种灵活性使得ChatGPT在生成对话内容、创作故事或产生新颖文本方面具有潜力。

短短几年时间ChatGPT已经从尚不完善到蓄势待发,我们应该感叹一下科技技术进步的速度,也应该对职业威胁而感到后怕。 

 

ChatGPT很厉害,但是它不一定是完美的。那它有什么缺陷呢?

  1. 理解限制:尽管ChatGPT在生成回答方面表现出色,但它并不真正理解语言的含义。它主要依赖于模式识别和统计规律来生成回复,而缺乏对语义和上下文的深层理解。这限制了它在处理复杂问题、解决逻辑错误或进行抽象推理等方面的能力。

  2. 缺乏实时学习和持续改进:ChatGPT是在固定的训练数据上进行训练的,它无法实时学习和适应新的信息或变化的环境。这使得它无法灵活地适应不同场景和应对新的问题。与之相比,人类程序员可以通过不断学习和经验积累来改进和优化解决方案。因此,ChatGPT在实时问题解决和持续改进方面存在局限性。

  3. 数据依赖性:ChatGPT的性能和质量受到其训练数据的影响。如果训练数据存在偏见、错误或不准确的信息,模型可能会带有或传递这些问题。此外,如果模型遭受到恶意训练数据的攻击,如输入具有误导性或有害的样本,它可能会生成错误或有害的回答。因此,对训练数据进行准确性和质量的审查尤为重要。

  4. 缺乏判断力和道德考虑:ChatGPT没有自主决策的能力,它仅仅基于训练数据和模式来生成回答。这意味着它缺乏判断力和道德考虑,无法自主评估哪个解决方法是最佳的,也无法识别和纠正偏见或不当内容。在某些情况下,它可能生成不准确、虚假或有害的回答,需要人类的干预和筛选。

  5. 安全和隐私问题:由于ChatGPT是一个开放式的生成模型,存在滥用和误导的风险。它可能被用于生成虚假信息、传播误导性内容或攻击性的语言。此外,ChatGPT也可能存储和处理用户的对话数据,引发隐私和安全方面的担忧。因此,在使用ChatGPT时需要特别注意安全性和隐私保护。

但是人工智能从正式诞生到现在也就60多年的历史,而GPT真正开始训练至今也才5年,无法想象,如果给它10年、50年、100年,它会发展成什么样子?

ChatAI对未来职业影响

人类已经经历过三次工业革命,每一次革命都对人类文明增添花彩,我相信再不远的将来人类会迎来第四次工业革命——人工智能

人类再某种领域一定会被人工智能所取代,而ChatGPT只是人工智能的代表。人工智能大规模的应用会波及到很多行业。 

举一些可能取代的例子:

  1. 简单客服代表:对于处理常见问题和提供基本支持的客服工作,ChatGPT可以作为自动化的替代品。它可以通过自动回答常见问题和提供基本指导,减少对人工客服代表的需求。

  2. 某些类型的数据分析和报告编写:ChatGPT可以用于生成基本的数据分析报告和总结。对于一些常规的数据处理和呈现任务,ChatGPT可以辅助分析师或报告编写人员的工作。

  3. 某些内容生成和创作任务:ChatGPT可以用于生成简单的文档、新闻稿、摘要等。当需要大量生成标准化或模板化内容时,ChatGPT可以提供快速的生成选项。

  4. 某些翻译和语言处理任务:对于一些简单的翻译任务或通用语言处理需求,ChatGPT可以提供初步的自动化翻译和语言处理功能。在特定领域或文化背景下,ChatGPT可能对某些翻译工作产生部分替代。

程序员是我们重点诉说的对象。

ChatGPT和类似的自然语言处理模型在某些特定任务中表现出色,但目前的技术还不能完全取代程序员的角色。尽管ChatGPT在文本生成和理解方面表现出惊人的能力,但它仍然存在一些局限性:

  1. 理解限制:尽管ChatGPT可以生成合理的文本回复,但它并不能真正理解语言的含义。它仅仅是通过模式识别和训练数据来生成回复,而缺乏对上下文和语义的深入理解。这意味着在处理复杂问题、解决逻辑错误或进行抽象推理时,ChatGPT可能会出现困难。

  2. 缺乏判断力:ChatGPT没有自主决策的能力,它只是根据预训练和微调的数据进行回应。它不具备判断力和直觉,无法独立思考和评估哪个解决方法是最佳的,这是程序员在解决复杂问题时所需要的能力之一。

  3. 数据依赖:ChatGPT的表现取决于它所接触的训练数据。如果训练数据存在偏见、错误或不准确的信息,它可能会带有或传递这些问题。人类程序员可以通过审查和纠正错误来提高质量和准确性,而ChatGPT无法自动修复这些问题。

  4. 安全和道德考虑:开放式的大型语言模型像ChatGPT可能会受到滥用或误导的风险。模型可能生成虚假信息、误导性的回答或具有潜在不当内容。因此,在应用ChatGPT时需要特别注意安全性和道德考虑。

尽管如此,ChatGPT和自然语言处理技术的发展对程序员有一定的影响。它们可以辅助程序员完成某些重复和简单的编码任务、提供自动化的文档和代码生成,或成为与用户进行对话交互的工具。然而,程序员的角色仍然是至关重要的,因为他们具备深入的技术理解、创造性解决问题的能力和对系统设计的综合思考。

ChatGPT的升级维护都离不开程序员的帮助,程序员应该是人工智能的最后一道防线,但是优胜劣汰,人工智能也会对程序员的市场需求大大降低。目前看来chatgpt是不能取代程序员的岗位,它们只能辅助程序员工作,但是未来应该也会对IT行业产生巨大的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60165.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习_TensorFlow】梯度下降

写在前面 一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱 写在中间 线性回归方程 如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线 但是,如果我们选取的这两个点不在直…

GD32F103VE外部中断

GD32F103VE外部中断线线0~15,对应外部IO口的输入中断。它有7个中断向量,外部中断线0 ~ 4分别对应EXTI0_IRQn ~ EXTI4_IRQn中断向量;外部中断线 5 ~ 9 共用一个 EXTI9_5_IRQn中断向量;外部中断线10~15 共用一个 EXTI15_10_IRQn中断…

MySQL数据库:表的约束

表的约束,实质上就是用数据类型去约束字段,但是数据类型的约束手法很单一,比如,我们在设置身份证号这个字段,数据类型唯一起的约束是它属于char类型或者varchar类型,不能是浮点型也不能是日期时间类型&…

.net 6 efcore一个model映射到多张表(非使用IEntityTypeConfiguration)

现在有两张表,结构一模一样,我又不想创建两个一模一样的model,就想一个model映射到两张表 废话不多说直接上代码 安装依赖包 创建model namespace oneModelMultiTable.Model {public class Test{public int id { get; set; }public string…

Linux服务器大量日志如何快速定位

Linux服务器大量日志如何快速定位 在生产环境,定位问题,经常会遇到日志文件特别多的情况,经常会遇到日志比较难拿的情况,所以有什么方法可以快速拿日志?除了在代码里很好的打印关键日志信息外,也需要掌握L…

RabbitMQ 教程 | 第10章 网络分区

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是 DevO…

第20节 R语言医学分析:某保险医疗事故赔偿因素分析

文章目录 某保险医疗事故赔偿因素分析源码源文件下载某保险医疗事故赔偿因素分析 我们分析数据集“诉讼”的第一个方法是确定样本数量、变量类型、缩放/编码约定(如果有)用于验证数据清理。 接下来,数据集看起来很干净,没有缺失值,并且对于分类变量,将编码约定替换为实际…

智慧工地云平台源码,基于微服务+Java+Spring Cloud +UniApp +MySql开发

智慧工地可视化系统利用物联网、人工智能、云计算、大数据、移动互联网等新一代信息技术,通过工地中台、三维建模服务、视频AI分析服务等技术支撑,实现智慧工地高精度动态仿真,趋势分析、预测、模拟,建设智能化、标准化的智慧工地…

LeetCode151.反转字符串中的单词

151.反转字符串中的单词 目录 151.反转字符串中的单词题目描述解法一:调用API解法二:原生函数编写 题目描述 给你一个字符串s,请你反转字符串中单词的顺序。 单词是由非空格字符组成的字符串,s中使用至少一个空格将字符串中的单…

嵌入式一开始该怎么学?学习单片机

学习单片机: 模电数电肯定必须的,玩单片机大概率这两门课都学过,学过微机原理更好。 直接看野火的文档,芯片手册,外设手册。 学单片机不要纠结于某个型号,我认为stm32就OK,主要是原理和感觉。…

IPSEC VPN知识点总结

具体的实验:使用IPSEC VPN实现隧道通信 使用IPSEC VPN在有防火墙和NAT地址转换的场景下实现隧道通信 DS VPN实验 目录 1.什么是数据认证,有什么作用,有哪些实现的技术手段? 2.什么是身份认证,有什么作用,有哪些实现…

SAP标准搜索帮助(Search Help)改造之标准增强点

1. 搜索帮助加载前 包含程序:LWDTMO01 行:40 标准搜索帮助输出前的控制(影响标准Search Help CDS View Search Help(如果在标准Search Help搜索帮助出口函数上修改控制参数,则不会影响 CDS View Search Help&#xf…

一百四十五、Kettle——查看Kettle在Windows本地和在Linux上生成的.kettle文件夹位置

(一)目的 查看kettle连数据库后自动生成的.kettle文件夹在Windows本地和在Linux中的位置, 这个文件很重要!!! (二).kettle文件夹在Windows本地的位置 C:\Users\Administrator\.k…

轻松搭建酒店小程序

酒店小程序的制作并不需要编程经验,只需要按照以下步骤进行操作,就能很快地搭建自己的小程序商城。 第一步,注册登录账号进入操作后台,找到并点击【商城】中的【去管理】进入商城的后台管理页面,然后再点击【小程序商城…

使用langchain与你自己的数据对话(四):问答(question answering)

之前我已经完成了使用langchain与你自己的数据对话的前三篇博客,还没有阅读这三篇博客的朋友可以先阅读一下: 使用langchain与你自己的数据对话(一):文档加载与切割使用langchain与你自己的数据对话(二):向量存储与嵌入使用langc…

orangepi 4lts ubuntu安装RabbitMQ

4lts的emmc 系统安装选文件系统格式 ext4 需先安装erlang: sudo apt install erlang 安装RabbitMQ: sudo apt install rabbitmq-server - 添加用户以便远程访问: - 账号密码都是admin: sudo rabbitmqctl add_user admin admin -sudo rabbitmqct…

嵌入式面试刷题(day3)

文章目录 前言一、怎么判断两个float是否相同二、float数据可以移位吗三、数据接收和发送端大小端不一致怎么办四、怎么传输float类型数据1.使用联合进行传输2.使用字节流3.强制类型转换 总结 前言 本篇文章我们继续讲解嵌入式面试刷题,给大家继续分享嵌入式中的面…

Python web实战之Django用户认证详解

关键词: Python Web 开发、Django、用户认证、实战案例 概要 今天来探讨一下 Django 的用户认证吧!在这篇文章中,我将为大家带来一些有关 Django 用户认证的最佳实践。 1. Django 用户认证 在开发 Web 应用程序时,用户认证是一个…

深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细…

Python小白学习:超级详细的字典介绍(字典的定义、存储、修改、遍历元素和嵌套)

目录 一、字典简介1.1 创建字典1.2 访问字典中的值1.3 添加键值对1.4 修改字典中的值实例 1.5 删除键值对1.6 由多个类似对象组成的字典1.7 使用get()访问值1.8 练习题 二、遍历字典2.1 遍历所有键值对实例 2.2 遍历字典中的所有键2.3 按照特定顺序遍历字典中的所有键2.4 遍历字…