Codeforces Round 942 (Div. 2) A-D1

题目: Codeforces Round 942 (Div. 2)

D2有缘再补吧…


A. Contest Proposal

题意

两个升序(不降)的序列a和b,可以在a的任意位置插入任意数(要保持升序),使对任意i,有a[i] <= b[i],问最少插入几次

思路

对于某个位置i插入什么数不用考虑,总有保持升序又满足a[i] <= b[i]的办法的,插入这个操作就相当于把a数组在i之后的部分后移一格
可以从前往后依次插入,这样前边的序列都是满足条件的不用管,后边依次判断要不要插入(如果a[i] > b[i]就要插入)

代码

i是遍历a数组看要不要插入,j是a[i]对应的b数组下标
总之把后移操作换成了移下标,i没动j后移说明a[i]对应的数还在后面,需要后移,答案加一
(我在说什么

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 105;

int a[N], b[N]; 

int main()
{
	int T, n;
	cin >> T;
	while (T--)
	{
		cin >> n;
		for (int i = 0; i < n; i++)
			cin >> a[i];
		for (int i = 0; i < n; i++)
			cin >> b[i];
		int ans = 0;
		int i = 0, j = 0;
		while (i < n)
		{
			while (j < n && a[i] > b[j])
			{
				j++;
				ans++;
			}
			i++, j++;
		}
		cout << ans << endl;
	}
	return 0;
}

B. Coin Games

题意

n个硬币,每个硬币有U或者D两个状态(朝上朝下),操作:选一个硬币取走,并把周围两个硬币翻面,玩家A和B依次操作,无法操作判输

思路

列了一些必赢必输的情况,然后发现这不U单数就必赢吗
在这里插入图片描述

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 105;

int a[N], b[N]; 

int main()
{
	int T, n;
	cin >> T;
	while (T--)
	{
		cin >> n;
		string str;
		cin >> str;
		int cnt = 0;
		for (int i = 0; i < str.size(); i++)
		{
			if (str[i] == 'U') cnt++;
		}
		if (cnt & 1) cout << "yes\n";
		else cout <<"no\n";
	}
	return 0;
}

C. Permutation Counting

题意

对i(1…n),你手头有a[i]张写着i的卡,你可以再任意买k张卡(1…n),问最终你手头的卡最多能凑出多少1-n的排列

思路

贪心,首先尽凑出尽可能多套[1-n]
也就是k要先补给数量少的卡 -> 排序,补前边的
枚举要凑出的[1-n]数,判断是否可行 -> 二分答案

假设最多能凑出x个[1-n],先把他们按同样的顺序(这个顺序好像有讲究但是反正不用输出)依次摆开,这样就有x * n - n + 1个排列了
有多的卡(指最后数量>= x + 1)摆在两边,每个数只能摆一次,每摆一个答案加一(总有一个排列顺序↑满足这点),所以答案要加上本来数量就>= x+1的卡 + k补完x个[1-n]后还剩的部分
(剩下的k肯定拿去买数量不够x+1的了,这样答案最大化,而且够不到的卡数一定大于剩下的k,因为小于等于的话都可以再凑一波[1-n]了)

代码

答应我技艺不精就全用long long好吗,在这de半天(给自己一拳
二分,lower_bound,upper_bound我一生之敌

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

typedef long long ll;
const int N = 2e5 + 5;

ll a[N], sum[N];
int n;
ll k;

ll cal(ll x)//如果要凑出x个[1-n],需要补多少卡
{
	int p = lower_bound(a + 1, a + n + 1, x) - a - 1;
	return x * p - sum[p];
}

int main()
{
	int T;
	cin >> T;
	while (T--)
	{
		cin >> n >> k;
		for (int i = 1; i <= n; i++)
			cin >> a[i];
		sort(a + 1, a + n + 1);//排序!
		sum[0] = 0;
		for (int i = 1; i <= n; i++)
			sum[i] = sum[i - 1] + a[i];//前缀和!好算!
		
		ll l = a[1], r = a[1] + k;
		while (l < r)
		{
			ll mid = l + r + 1 >> 1;
			if (cal(mid) <= k) l = mid;
			else r = mid - 1;
		}
		//printf("l %lld\n", l);
		
		k = k - cal(l);
		int p = upper_bound(a + 1, a + n + 1, l) - a - 1;//这里要求第一个本来数量就>= x+1的卡的下标(实际上是p + 1),所以要用upper_bound
		ll res = l * n - n + 1 + k + n - p; //l个[1-n]的 + 剩下的k + 本来就>= x+1的卡数
		cout << res << endl;
	}
	return 0;
}

D1. Reverse Card (Easy Version)

思路

d = gcd(a, b)a = ka * d, b = kb * d

b * d | a + b
b | ka + kb
kb * d | ka + kb
kb | ka

故有gcd(a, b) = b,设a = k * b

b * b | k * b + b
b | k + 1

k + 1 = k' * b,则a = (k' * b - 1) * b = k' * b * b - b
对于每个b,有(n + b) / b * b个k’满足a在n范围内
枚举b,算a的个数
(好绕啊…写个博客重推一遍还是没懂思路

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

typedef long long ll;
const int N = 2e6 + 5;

int main()
{
	ll T, n, m;
	cin >> T;
	while (T--)
	{
		cin >> n >> m;
		ll ans = n;
		for (ll i = 2; i <= m; i++)
		{
			ll t = i * i;
			ans += (n + i) / t;
			//if (n/t) cout << i << ' ' << n / t << endl;
		}
		cout << ans << endl;
	}
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/600084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

shell脚本编写-测试同一网段内主机是否在线

除了可以使用ansible自动化运维工具判断主机是否在线以外&#xff0c;还可以通过编写Shell脚本来实现。 1、编写脚本 #! /bin/bash #测试192.168.81.0/24网段中哪些主机处于开机状态&#xff0c;哪些主机处于关机状态# #方法一&#xff1a;使用for循环判断 # for i in {1..25…

红海云OA存在任意文件上传漏洞【附poc】

漏洞复现 1、fofa poc见文末 body"RedseaPlatform" 打开burp进行抓包发送到repeater&#xff0c;如下图所示&#xff1a; 打入poc&#xff08;文末获取&#xff09;&#xff0c;成功上传。 「你即将失去如下所有学习变强机会」 学习效率低&#xff0c;学不到实战内…

聊聊 ASP.NET Core 中间件(三):如何创建自己的中间件?

前言 本质上&#xff0c;中间件类也是一个普通的 .NET 类&#xff0c;它不需要继承任何父类或者实现任何接口。 但是有几个约定&#xff1a; 需要有一个构造方法构造方法至少要有一个 RequestDelegate 类型的参数&#xff0c;用来指向下一个中间件。需要定义一个名字为 Invo…

后仿中必须读懂的User-defined primitives(UDP)

一 UDP定义规则 UDP&#xff0c;全名&#xff1a;User-defined primitives。 用户自己定义的原语。 UDP可分为&#xff1a;combinational UDP&#xff08;组合逻辑&#xff09;和 sequential UDP&#xff08;时序逻辑&#xff09;。 1.1 组合逻辑UDP combinational UDP用于…

软件系统测试方案书(测试计划-Word原件)

2 引言 2.1 编写目的 2.3 测试人员 2.4 项目背景 2.5 测试目标 2.6 简写和缩略词 2.7 参考资料 2.8 测试提交文档 2.9 测试进度 3 测试环境 3.1 软硬件环境 4 测试工具 5 测试策略 5.1 测试阶段划分及内容 5.1.1 集成测试 5.1.2 系统测试 5.1.2.1 功能测试 5.…

Autosar NvM配置-手动配置Nvblock及使用-基于ETAS软件

文章目录 前言NvDataInterfaceNvBlockNvM配置SWC配置RTE Mapping使用生成的接口操作NVM总结前言 NVM作为存储协议栈中最顶层的模块,是必须要掌握的。目前项目基本使用MCU带的Dflash模块,使用Fee模拟eeprom。在项目前期阶段,应该充分讨论需要存储的内容,包括应用数据,诊断…

在Ubuntu上安装docker

一、安装docker 更新系统包列表&#xff1a; sudo apt-get update安装必要的依赖软件包&#xff0c;使apt可以通过HTTPS使用repository。 sudo apt-get install apt-transport-https ca-certificates curl software-properties-common添加Docker的阿里云GPG密钥&#xff1a;…

算法提高之树的最长路径

算法提高之树的最长路径 核心思想&#xff1a;树形dp 枚举路径的中间节点用f1[i] 表示i的子树到i的最长距离,f2[i]表示次长距离最终答案就是max(f1[i]f2[i]) #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N …

数据结构(c):队列

目录 &#x1f37a;0.前言 1.什么是队列 2. 队列的实现 2.1定义队列节点 2.2定义队列 2.3队尾入队列 2.4判断队列是否为空 2.5队头出队列 2.6 队列首元素 2.7队尾元素 2.8队列内的元素个数 2.9销毁队列 3.试运行 &#x1f48e;4.结束语 &#x1f37a;0.前言 言C之…

[笔记] Win11 Microsoft Store App 离线下载

微软应用商店无法下载或下载缓慢解决方法 在一些环境下 Microsoft Store 下载速度缓慢&#xff0c;或者需要账号登录才能安装的场景&#xff0c;可以通过找到对应的离线安装包的形式进行安装。 Micorsoft Store 中的离线安装包一般后缀为 AppxBundle 和 Appx。以 Ubuntu 为例…

(四)JSP教程——request内置对象

request对象是将客户端浏览器数据提交给服务器端JSP页面的唯一数据通道&#xff0c;通过该通道JSP页面能够获取浏览器信息、form表单信息、URL参数信息等。 1.from表单向JSP文件传递数据 form表单是浏览器向服务器传递数据的一种基本机制&#xff0c;包含两种方式&#xff1a;…

智慧校园功平台能结构

高等教育信息化是促进高等教育改革创新和提高质量的有效途径&#xff0c;是教育信息化发展的创新前沿。进一步加强基础设施和信息资源建设&#xff0c;重点推进信息技术与高等教育的深度融合&#xff0c;能促进教育内容、教学手段和方法现代化&#xff0c;创新人才培养、科研组…

卷价格不如卷工艺降本增效狠抓模块规范化设计

俗话说&#xff0c;“卷价格不如卷工艺”&#xff0c;这意味着在追求成本控制和效率提升的过程中&#xff0c;蓝鹏的领导认为蓝鹏应该更注重工艺的优化和创新&#xff0c;而不仅仅是价格的竞争。而模块规范化设计正是实现这一目标的有效途径。 模块规范化设计可以提高生产效率…

推荐网站(5)Pika文字生成视频,ai视频创作

今天推荐一个网站&#xff0c;Pika文字生成视频&#xff0c;通过问题描述&#xff0c;帮我们生成对应的视频&#xff0c;非常的实用。 比如输入&#xff1a;一只小狗在河边洗澡 当然我们还可以在生成的视频上编辑 点击编辑后出来一些属性&#xff0c;可以修改区域&#xff0c…

TitanIDE安装常见问题解答

在软件开发和编程的世界里&#xff0c;集成开发环境&#xff08;IDE&#xff09;扮演着至关重要的角色。TitanIDE作为一款功能强大的开发工具&#xff0c;深受广大开发者的喜爱。然而&#xff0c;在安装和使用TitanIDE的过程中&#xff0c;开发者们往往会遇到一些问题和挑战。针…

cmake进阶:目录属性之 INCLUDE_DIRECTORIES说明一

一. 简介 前一篇文章学习了 cmake的一些目录属性&#xff0c;其中最重要的是 头文件搜索路径。文章如下&#xff1a; cmake进阶&#xff1a;目录属性说明一-CSDN博客 本文主要学习 一个目录属性 INCLUDE_DIRECTORIES&#xff0c;即头文件搜索路径。 二. cmake进阶&#xff1…

doris经典bug

在部署完登录web页面查看的时候会发现只有一个节点可以读取信息剩余的节点什么也没读取到 在发现问题后&#xff0c;我们去对应的节点去看log日志&#xff0c;发现它自己绑定到前端的地址上了 现在我们已经发现问题了&#xff0c;以下就开始解决问题 重置doris 首先对be进行操…

基于springboot+vue+Mysql的教师人事档案管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

在Java中如何有效地处理内存泄露

在Java中&#xff0c;处理内存泄露有多种方法&#xff0c;以下是其中三种常见的方法及其原理和适用场景&#xff1a; ## 1. 合理使用垃圾回收机制 Java中的垃圾回收机制&#xff08;Garbage Collection&#xff0c;GC&#xff09;是一种自动化的内存管理技术&#xff0c;它可以…

酸奶(科普)

酸奶&#xff08;yogurt&#xff09;是一种酸甜口味的牛奶饮品&#xff0c;是以牛奶为原料&#xff0c;经过巴氏杀菌后再向牛奶中添加有益菌&#xff08;发酵剂&#xff09;&#xff0c;经发酵后&#xff0c;再冷却灌装的一种牛奶制品。市场上酸奶制品多以凝固型、搅拌型和添加…