Python 全栈体系【四阶】(四十一)

第五章 深度学习

九、图像分割

1. 基本介绍

1.1 什么是图像分割

图像分割(Segmentation)是图像处理和机器视觉一个重要分支,其目标是精确理解图像场景与内容。图像分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此图像分割是从像素级别来理解图像的。如下图所示的照片,属于人的像素部分划分成一类,属于摩托车的像素划分成一类,背景像素划分为一类。

在这里插入图片描述

图像分割

图像分割级别可以分为语义级分割、实例级分割和全景分割。

  • 语义分割(Semantic Segmentation):对图像中的每个像素划分到不同的类别;
  • 实例分割(Instance Segmentation):对图像中每个像素划分到不同的个体(可以理解为目标检测和语义分割的结合);
  • 全景分割(Panoptic Segmentation):语义分割和实例分割的结合,即要对所有目标都检测出来,又要区分出同个类别中的不同实例。

在这里插入图片描述

左上:原图;右上:语义级分割;左下:实例级分割;右下:全景分割
1.2 应用

1)无人驾驶

在这里插入图片描述

2)医学、生物图像分割(如病灶识别)

在这里插入图片描述

3)无人机着陆点判断

4)自动抠图

在这里插入图片描述

5)遥感图像分割

在这里插入图片描述

6)工业质检

在这里插入图片描述

1.3 图像分割的难点

1)数据问题:分割不像检测等任务,只需要标注边框就可以使用,分割需要精确到像素级标注,包括每一个目标的轮廓等信息;

2)计算资源问题:要想得到较高的精度就需要使用更深的网络、进行更精确的计算,对计算资源要求较高。目前业界有一些轻量级网络,但总体精度较低;

3)精细分割:目前很多算法对于道路、建筑物等类别分割精度很高,能达到98%,而对于细小的类别,由于其轮廓太小,而无法精确的定位轮廓;

4)上下文信息:分割中上下文信息很重要,否则会造成一个目标被分成多个部分,或者不同类别目标分类成相同类别;

2. 图像分割基本原理

2.1 整体实现思路

图像分割一般思路如下:

1)输入图像,利用深度卷积神经网络提取特征

2)对特征图进行上采样,输出每个像素的类别

3)利用损失函数,对模型进行优化,将每个像素的分类结果优化到最接近真实值

在这里插入图片描述

2.2 评价指标

1)像素精度(pixel accuracy ):每一类像素正确分类的个数/ 每一类像素的实际个数;

2)平均像素精度(mean pixel accuracy ):每一类像素的精度的平均值;

3)平均交并比(Mean Intersection over Union):求出每一类的IOU取平均值。

3. 常用模型

3.1 FCN(2014)

FCN(全称Fully Convolutional Networks)是图像分割的开山之作,2014年由加州大学伯克利分校Jonathan Long等人提出(论文名称《Fully Convolutional Networks for Semantic Segmentation》,该论文存在多个版本)。在该网络模型中,使用卷积层代替普通CNN中的全连接层,使用不同尺度信息融合,可以生成任意大小的图像分割图,从而实现对图像进行像素级的分类。

3.1.1 什么是FCN

一个典型的卷积神经网络在处理图像分类问题时,通常会使用若干个卷积层,之后接若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量,由输出层在softmax激活函数的作用下,产生N个分类概率,取其中概率最大的类别作为分类结果。如下图所示:
在这里插入图片描述

图像分割需要对图像进行像素级分类,所以在输出层使用全连接模型并不合适。FCN与CNN的区别在把于CNN最后的全连接层换成卷积层(所以称为“全卷积网络”)。该网络可以分为两部分,第一部分,通过卷积运算提取图像中的特征,形成特征图;第二部分,对特征图进行上采样,将特征图数据恢复为原来的大小,并对每个像素产生一个分类标签,完成像素级分类。结构如下图所示:

在这里插入图片描述

上采样示意图:

在这里插入图片描述

3.1.2 网络结构

下图是一个FCN的结构。

在这里插入图片描述

  • 输入:H*W的图像。由于没有全连接层,网络可以接收任意维度的输入(而不是固定大小图像);

  • 第1~5卷积层:执行卷积、池化操作。第一层pooling后变为原图大小的1/4,第二层变为原图大小的1/8,第五层变为原图大小的1/16,第八层变为原图大小的1/32(勘误:其实真正代码当中第一层是1/2,以此类推)。经过多次卷积和pooling以后,得到的图像越来越小,分辨率越来越低。其中图像到 H 32 ∗ W 32 \frac{H}{32} * \frac{W}{32} 32H32W 的时候图片是最小的一层时,所产生图叫做heatmap热图,热图就是我们最重要的高维特征图,得到高维特征的heatmap之后就是最重要的一步也是最后的一步对原图像进行upsampling,把图像进行放大、放大、放大,到原图像的大小;

  • 输出:由于将全连接模型换成了卷积层,原本CNN中输出的1000*1*1维的特征变成了1000*W*H维,1000张热点图(heatmap)。在上述结构的基础上,将1000维变成21维(20种PASCAL类别+背景),再接一个反卷积层,以双线性上采样粗输出到像素密集输出,得到21张大小和原图一致的Mask,然后和真实标签逐像素比较分类结果,进行梯度下降优化。如下图右侧有狗狗和猫猫的图:

在这里插入图片描述

3.1.3 特征融合

FCN采用了特征融合,将粗的、高层信息与精细的、低层信息融合用来提高预测精度。融合实现方式是,对特征图进行上采样,然后将特征图对应元素相加。经过多次卷积、池化后,特征图越来越小,分辨率越来越低,为了得到和原图大小的特征图,所以需要进行上采样。作者不仅对pool5之后的特征图进行了上采样还原,也对pool4和pool3之后的特征图进行了还原,结果表明,从这些特征图能很好的获得关于图片的语义信息,而且随着特征图越来越大,效果越来越好。

在这里插入图片描述

以下是不同大小特征图进行上采样,预测结果对比:

在这里插入图片描述

3.1.4 评价指标

作者在论文中提出了4种评价指标,即像素准确度、平均准确率、平均交并比、频率加权交并比。设 n i j n_{ij} nij为类别i预测为类别j的像素数量,有 n c l n_{cl} ncl个不同的类别,类别i总共有 t i = Σ j n i j t_i = \Sigma_j n_{ij} ti=Σjnij个像素,各指标具体表述如下:

  • 像素准确率(Pixel Accuracy)

P A = Σ i n i i Σ i t i PA = \frac{\Sigma_i n_{ii}}{\Sigma_i t_i} PA=ΣitiΣinii

  • 平均准确率(Mean Pixel Accuracy)

M P A = 1 n c l Σ i n i i t i MPA = \frac{1}{n_{cl}} \Sigma_i \frac{ n_{ii}}{t_i} MPA=ncl1Σitinii

  • 平均交并比(Mean Intersection over Union)

M I U = 1 n c l Σ i n i i t i + Σ j n j i − n i i MIU = \frac{1}{n_{cl}} \Sigma_i \frac{n_{ii}}{t_i + \Sigma_j n_{ji} - n_{ii}} MIU=ncl1Σiti+Σjnjiniinii

  • 频率加权交并比(Frequency Weighted IU )

F W I U = 1 Σ k t k Σ i t i n i i t i + Σ j n j i − n i i FWIU = \frac{1}{\Sigma_k t_k} \Sigma_i \frac{t_i n_{ii}}{t_i + \Sigma_j n_{ji} - n_{ii}} FWIU=Σktk1Σiti+Σjnjiniitinii

3.1.5 结论
  • NYUDv2数据集。该数据集包含1449个RGB-D图像。论文给出的实验结果如下(其中,FCN-32s表示未修改的粗糙模型,FCN-16s为16 stride的模型,RGB-HHA是采用了RGB和HHA融合的模型):

在这里插入图片描述

  • SIFT Flow。该数据集包含2688幅图像,包含“桥”、“山”、“太阳”等33个语义类别以及“水平”、“垂直”和“天空”三个几何类别。论文给出的实验结果如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/599342.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【GA】deap之个体和种群概览(一)

参考资料 1.《基于遗传算法(deap库)的一元函数寻优代码详解》 2.官方文档:http://deap.readthedocs.io/en/master/index.html 3.《 Deap: python中的遗传算法工具箱》 ,⭐️666 —————— 文章目录 壹、overview一、Types1. Fitness 适应…

八.吊打面试官系列-Tomcat优化-深入源码剖析Tomcat如何打破双亲委派

前言 上篇文章《Tomcat优化-深入Tomcat底层原理》我们从宏观上分析了一下Tomcat的顶层架构以及核心组件的执行流程。本篇文章我们从源码角度来分析Tomcat的类加载机制,且看它是如何打破JVM的ClassLoader双亲委派的 Tomcat ClassLoader 初始化 Tomcat的启动类是在…

【热门话题】实用Chrome命令:提升前端开发效率的利器

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 实用Chrome命令:提升前端开发效率的利器引言目录1. 快速打开Chrome …

基于C语言的贪吃蛇小游戏(简易版)

这篇博客会是对学习C语言成果的检测,为了实现贪吃蛇小游戏,我们用到的“工具”有:C语言函数、枚举、结构体、动态内存管理、预处理指令、链表、Win32 API等。 目录 1.简易版游戏效果 1.1欢迎界面 1.2游戏规则提示页面 1.3游戏进行页面 …

《挑战100个产品拆解:抖音》

抖音,作为当今社交媒体领域的明星产品,其背后的产品思维一直备受关注。在这篇文章中,我们将深入拆解抖音的产品思维,揭示其成功的秘密。 产品定位 1.产品是什么样的用户: 年轻人和青少年是抖音的主要用户群体。抖音…

20240506 深度学习高级技术点

1.基于BN层剪枝 基于Batch Normalization (BN)层进行剪枝是一种常用的模型压缩方法,特别是在卷积神经网络(CNNs)中。BN层在训练期间用于加速收敛和提高模型的泛化能力,而在剪枝过程中,BN层提供的统计信息(特别是均值(mean)和方差…

深度学习之基于YOLOv5电线电缆目标检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 项目简介:深度学习之基于YOLOv5电线电缆目标检测系统 本项目旨在利用深度学习技术,特别是基…

栈(使用顺序表构建)

P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 目录 1、栈的概念2、栈的数组构建方法2.1 前言2.2 正文2.2.1 栈的初始化2.2.2 栈的销毁2.2.3 压…

工程绘图神器:Origin 2021软件安装与图像demo水印问题解决

目录 引言 正文 01-Origin软件简介 02-Origin软件安装 03-Origin软件复制图像带有水印问题解决 引言 注:本篇软件安装内容引用了微信公众号“软件管家”里的Origin 2021安装教程和…

[1726]java试飞任务规划管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java试飞任务规划管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql…

环境配置、内核配置、字符型驱动设备

配置交叉编译环境 arm-linux-gcc -v交叉编译 1、将版本配置为4.4.3 2、内核一部分 外设(时钟配置、GPIO、串口) 3、配置环境(将板载设置为2440) ubuntu下查看函数原码 ctag -R 路径 设置完成后进主 函数将光标停在函数名字处按…

Linux动态库与静态库解析

文章目录 一、引言二、C/C源文件的编译过程三、静态库1、静态库的定义和原理2、静态库的优缺点3、静态库的创建和使用a、创建静态库b、使用静态库 四、动态库1、动态库的定义和原理2、动态库的优缺点3、动态库的创建和使用示例a、创建动态库b、使用动态库 五、动静态库的比较 一…

KDTree空间搜索算法学习

目录 KDTree(K-Dimensional Tree)原理步骤空间索引建立例子[^1] 相关包案例[^2]数据KDTree 识别轨道衔接出行轨道衔接单车骑行范围分析结果保存 KDTree(K-Dimensional Tree)原理 将需要匹配的 K 维空间点建立 K 维树空间索引&…

Unet简单结构概述

总体结构代码 class UNet(nn.Module):def __init__(self, n_channels, n_classes, bilinearFalse):super(UNet, self).__init__()self.n_channels n_channelsself.n_classes n_classesself.bilinear bilinearself.inc (DoubleConv(n_channels, 64))self.down1 (Down(64, …

软件设计师-应用技术-数据结构及算法题4

考题形式: 第一题:代码填空 4-5空 8-10第二题:时间复杂度 / 代码策略第三题:拓展,跟一组数据,把数据带入代码中,求解 基础知识及技巧: 1. 分治法: 基础知识&#xff1…

取消vscode go保存时自动格式化代码

go:v1.22.0 vscode go 插件:v0.41.4 setting.json formatOnSave: 保存文件时,是否执行格式化 codeActiosnOnSave:保存文件时,是否执行某些操作 organizeImports: 不再改动import()里面的包

分类规则挖掘(三)

目录 四、贝叶斯分类方法(一)贝叶斯定理(二)朴素贝叶斯分类器(三)朴素贝叶斯分类方法的改进 五、其它分类方法 四、贝叶斯分类方法 贝叶斯 (Bayes) 分类方法是以贝叶斯定理为基础的一系列分类算法的总称。贝…

python中numpy库使用

array数组 生成array数组 将list转化为array数组 import numpy as np np.array([1,2],typenp.int32)其中dtype定义的是元素类型,np.int32指32位的整形 如果直接定义dtypeint 默认的是32位整形。 zeors和ones方法 zeros()方法,该方法和ones()类似&a…

Qt——入门基础

目录 Qt入门第一个应用程序 main.cpp widget.h widget.cpp widget.ui .pro Hello World程序 对象树 编辑框 按钮 Qt 窗口坐标系 Qt入门第一个应用程序 main.cpp 这就像一开始学语言时都会打印一个“Hello World”一样,我们先来看看创建好一个项目后&…

ModuleNotFoundError: No module named ‘PyQt5‘

运行python程序的时候报错:ModuleNotFoundError: No module named ‘PyQt5‘ 这是因为没有安装pyqt5依赖包导致的,安装一下即可解决该问题。 安装依赖 pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple 这里是使用的清华镜像源进行安装…