【统计推断】-01 抽样原理之(六):三个示例

目录

  • 一、说明
  • 二、处理有限的、大尺度的母体抽样
  • 三、非参数的估计
  • 四、连续母体抽样技巧--分箱

一、说明

   对于抽样问题,前几期文章都是理论探讨。本篇给出若干示例,展现具体的情况下,面对数据,如何给出处理策略。

二、处理有限的、大尺度的母体抽样

   【问题1】一所大学有3000名男生,身高服从均值为68.8英寸,标准差为3.0英寸的正态分布。设计抽样为80组样本,每组25名学生。
问题:1)有放回抽样。2)无放回抽样。问抽样均值抽样的均值和标准差是多少?
分析:抽样分布的空间:
   在有放回抽样中,样本分布的抽样组数量是 300 0 2 5 3000^25 300025,显然数量庞大。
   在不放回抽样中,样本分布的抽样组数量是 C 3000 25 C_{3000}^{25} C300025,显然数量庞大。
   因此,大数定律成立。
   无论是有放回抽样中,还是不放回抽样中,抽样分布的样本数量远远高于80,因此,真实的的抽样分布无法获得,只能获得经验的抽样分布。
   1)对于有限母体,无放回抽样,以下公式成立
在这里插入图片描述
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0
σ x ˉ = σ N = σ N N p − N N p − 1 = 3 25 3000 − 25 3000 − 1 = 0.6 \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}=\frac{\sigma}{\sqrt{N}}\sqrt{\frac{N_p-N}{N_p-1}}=\frac{3}{\sqrt{25}}\sqrt{\frac{3000-25}{3000-1}}=0.6 σxˉ=N σ=N σNp1NpN =25 330001300025 =0.6
2)对于有限母体,有放回抽样,以下公式成立
μ x ˉ = μ \mu_{\bar{x}}=\mu μxˉ=μ
σ x ˉ = σ N \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} σxˉ=N σ
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0; σ x ˉ = 4 25 = 0.6 \sigma_{\bar{x}}=\frac{4}{\sqrt{25}}=0.6 σxˉ=25 4=0.6

   结论:
   1)对于大容量的有限母体,因为抽样分布过于庞大,可以按无限母体处理。
   2)对于大容量的抽样分布,有放回和无放回抽样区别不大。
   3)上述样本均值的经验分布,可近似看成均值为68.8英寸,标准差为0,6的正态分布。

三、非参数的估计

   注意,抽样的参数估计并不是我们最后的目的,最后的目的是在样本参数估计的基础上,发掘出更多的特点。

   【问题2】在问题1中,在80个样本中,能够找到几个样本抽样,它们的特征是1)均值在66.8英寸和68.3英寸之间 2)均值小于66.4英寸。

   【分析】
   抽样分布的整体很大,因此无法穷举,因此,抽样分布也是一个估计而已。
通过上述计算,均值抽样满足 N ( 68 , 0. 6 2 ) N(68,0.6^2) N(68,0.62)的正态分布。
在这里插入图片描述
   因此,按照抽样分布中,均值抽样的样本落在【66.8,68.3】的概率是: P ( 66.8 ⩽ x ⩽ 68.3 ) P(66.8\leqslant x \leqslant 68.3) P(66.8x68.3)
   以上是个非标准的,转化成标准正态分布后,可以查表得到P;通过s=P*80可以得到满足以上所条件的抽样数s。

【解决】样本标准化,一般指向以下步骤:
z = X ˉ − μ X ˉ σ X ˉ = X ˉ − 68.0 0.6 z=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-68.0}{0.6} z=σXˉXˉμXˉ=0.6Xˉ68.0
66.8 的标准值 = 66.8 − 68.0 0.6 = − 2 66.8的标准值=\frac{66.8-68.0}{0.6}=-2 66.8的标准值=0.666.868.0=2
68.3 的标准值 = 68.4 − 68.0 0.6 = 0.5 68.3的标准值=\frac{68.4-68.0}{0.6}=0.5 68.3的标准值=0.668.468.0=0.5
从网上随便查找一个标准正态表:
在这里插入图片描述
   P(-2, 0.5) = 0.6915 - (1-0.9772) = 0.6687
s = 80*0.6687 = 53.49
   即在80组抽样中,估计有53个均值在66.8-68.3之间。

四、连续母体抽样技巧–分箱

   在数据分析过程中,常常遇到母体是连续分布的情况;按照理论上说,抽样数据在任意区间都应该是无限的,那么如何抽样?答案是用分箱技术,所谓分箱技术,就是将连续无限集合划分成有限集合的过程。这个过程当然是近似的。
在这里插入图片描述

   下面举出一个具体示例。
   对XYZ大学的100个男生进行抽样。这里母体就是有限100;对母体进行分箱后数据如下:
在这里插入图片描述

  1. 以下是对分箱后的均值计算方法
    在这里插入图片描述
    在没有任何信息的情况,均值计算如下:
    X ˉ = 0.05 × 61 + 0.18 × 64 + 0.42 × 67 + 0.27 × 70 + 0.08 × 73 0.05 + 0.18 + 0.42 + 0.27 + 0.08 = 67.45 \bar{X}=\frac{0.05\times 61+ 0.18\times64+ 0.42\times67+0.27\times70+0.08\times73}{0.05+0.18+0.42+0.27+0.08}=67.45 Xˉ=0.05+0.18+0.42+0.27+0.080.05×61+0.18×64+0.42×67+0.27×70+0.08×73=67.45

2)在有如下抽样后,如何处理?
在这里插入图片描述
1)均值:通过【 67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5】输入python代码。很容易得到。

import statistics
data = [67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5]
mean = statistics.mean(data)
dev  = statistics.pstdev(data)

mean = 67.57

2)标准差
在这里插入图片描述
可以得到:
dev=1.40

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/597957.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

73. 矩阵置零/54. 螺旋矩阵

73. 矩阵置零 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 思路&#x…

微信/支付宝支付服务搭建,一次性搞定!

微信支付 付款码支付 付款码支付是指用户展示微信钱包内的“付款码”给商户系统扫描后直接完成支付,适用于线下场所面对面收银的场景,例如商超、便利店、餐饮、医院、学校、电影院和旅游景区等具有明确经营地址的实体场所JSAPI支付 JSAPI支付是指商户通过…

OpenCV 库来捕获和处理视频输入和相似度测量(73)

返回:OpenCV系列文章目录(持续更新中......) 上一篇:OpenCV的周期性噪声去除滤波器(70) 下一篇 :使用 OpenCV 创建视频(74) ​ 目标 如今,拥有数字视频录制系统供您使用是很常见的。因此,您最终会遇到不再处理一批图像&#xf…

连锁收银系统总仓到门店库存调拨操作教程

1、进入系统后台,系统后台登录网址: 2、点击商品>门店调拨 3、选择调出仓库和调入门店 4、可选择添加商品逐个进行调拨,也可以批量导入需要调拨的商品 然后点击确定。 5、新增调拨后,系统会显示“待出库”状态 6、仓库已经准备…

Python 中使用私有成员的子类化

1、问题背景 Python 语言中,变量名与访问器同名是一个非常好的特性: self.__value 1def value():return self.__value但是,当我们想要子类化一个类,并访问其私有成员时,却没有一种简单的方法。通常,我们…

高速、简单、安全的以太彩光,锐捷网络发布极简以太全光 3.X 方案

从 2021 年 3 月正式推出到现在,锐捷网络极简以太全光方案已经走进第四个年头。IT 仍在不断向前发展,数字化进程深入,数字化业务增多,更广泛的终端设备接入企业级园区网络,对园区网络提出了更高的要求,例如…

Flutter开发Dart中的队列(Queue)

文章目录 Dart中的队列(Queue)基本操作示例队列的类型队列的应用总结 Dart中的队列(Queue) 队列是一种抽象的数据结构,遵循“先进先出”(FIFO)的原则。这意味着最早添加的元素将首先被移除。队…

PS路径文字怎么变换的?

如果网友们没有用过钢笔工具,画好后的样子是什么,建议你看看这个方法! 建立的路径之后,在编辑菜单栏里单击。 选择变换路径,可以改变路径文字的方向,点击垂直翻转即可完成方向的改变!

vue3+vite+axios+ElementPlus+ElLoading简易封装

1.安装按需加载element-plus需要的依赖包 pnpm install element-pluspnpm install axios# 按需自动导入 pnpm install -D unplugin-vue-components unplugin-auto-import# 自动导入element-plus样式 pnpm install -D vite-plugin-style-import2.修改jsconfig.json {"com…

【iOS】方法交换(Method Swizzling)

文章目录 前言一、原理与注意用法注意要点Method Swizzing涉及的相关API 二、应用场景与实践1.统计VC加载次数并打印2.防止UI控件短时间多次激活事件3.防崩溃处理:数组越界问题4.防KVO崩溃 总结 前言 上文讲到了iOS的消息发送机制,在消息机制中我们了解…

【革命启示录】Spring框架:Java开发的“核聚变”能量源!

Hello,我是阿佑,今天给大家整的活是 《Java开发的“核聚变”能量源》 文章目录 Spring框架原理详解一、引言简介目的特点例子 二、背景介绍问题解决方案例子 三、核心概念3.1 控制反转(Inversion of Control, IoC)定义实现例子与代…

04-28 周日 FastAPI Post请求同时传递文件和普通参数

04-28 周日 FastAPI Post请求同时传递文件和普通参数 时间版本修改人描述04-28 周日V0.1宋全恒新建文档2024年5月6日14:20:05V1.0宋全恒完成文档的传递 简介 由于在重构FastBuild的时候,为了支持TLS是否启用,在接口中需要同时传递文件参数和其他参数&am…

应急响应靶机训练-近源渗透OS-1

前言 应急响应靶机训练,为保证每位安服仔都有上手的机会,不做理论学家,增加动手经验,可前来挑战应急响应靶机-近源渗透OS1,此系列后期会长期更新,关注本公众号,被动学习。 挑战内容 前景需要:…

Spring Gateway的核心功能:路由、过滤、限流一网打尽

Spring Gateway的简介 在微服务架构的世界里,如同繁星点点的服务需要一个指挥家,将它们有序地组织起来,让它们能够和谐地协同工作。这个指挥家,就是Spring Gateway。它是一个基于Spring Framework 5、Project Reactor和Spring Bo…

Java多线程:常见的线程的创建方法及Thread类详解

目录 一.并发编程相关概念 线程与进程 多线程 Java中线程的状态 二.线程的创建方法 方法一:继承Thread类 方法二:实现Runnable接口 其他方法 三.Thread类详解 Thread常见构造方法 Thread常见属性 Thread常见方法 start() 与 run() sleep(…

使用代理IP时,如何预防未知的风险?

在使用代理IP时,预防未知的风险是至关重要的。代理IP虽然提供了诸多便利,如匿名浏览、访问控制和内容过滤等,但如果不加以妥善管理和使用,可能会面临数据泄露、隐私暴露、恶意活动关联等风险。以下是一些建议,以帮助您…

Java中的maven的安装和配置

maven的作用 依赖管理 方便快捷的管理项目依赖的资源,避免版本冲突问题 统一项目管理 提供标准,统一的项目结构 项目构建 标准跨平台(Linux、windows、MacOS)的自动化项目构建方式 maven的安装和配置 在maven官网下载maven Ma…

如何用Kimi,5秒1步生成流程图

引言 在当前快节奏的工作环境中,拥有快速、专业且高效的工具不可或缺。 Kimi不仅能在5秒内生成专业的流程图(kimi),还允许实时编辑和预览,大幅简化了传统流程图的制作过程。 这种迅速的生成能力和高度的可定制性使得…

如何使用低代码快速创建一个复杂交叉报表?

前言 在当今数字化时代,数据是企业决策和发展的重要支柱。为了更好地理解和利用数据,生成清晰、全面的报表至关重要。而复杂交叉报表作为一种高级数据分析工具,能够帮助企业深入挖掘数据背后的价值,提供全面的数据概览和分析结果…

数据分析——业务指标量化

业务指标量化 前言一、统计指标二、统计指标特点完整的统计指标统计指标的理解和使用方法 三、统计指标类型总量指标时期指标时点指标总量指标的作用 相对指标计划完成相对数指标结构相对数指标比例相对数指标比较相对数指标动态相对数指标 平均指标 四、数量指标和质量指标五、…