本文是作者本人做数仓调优时,所经常使用的SQL调优技巧,这些“技巧”也是经过日常不断摸索、问题排查以及网络检索并且经过本人在线上大规模使用过的,对于下面这12条(不算多,但特别有用)调优小“技巧”,希望能帮助阅读本文的同学能够在日常编写分析语句时,提升任务执行的效率。
当然也希望你能谨记并养成一种调优习惯,那么无论对于工作还是面试都是有利无害。
请记住:在数据处理中,不怕数据量大,就怕数据倾斜(简单讲就是数据热点)!
01.请慎重使用COUNT(DISTINCT col)
问题原因:
distinct会将b列所有的数据保存到内存中,形成一个类似hash的结构,速度是十分的块;但是在大数据背景下,因为b列所有的值都会形成以key值,极有可能发生OOM
解决方案:
所以,可以考虑使用Group By 或者 ROW_NUMBER() OVER(PARTITION BY col)方式代替COUNT(DISTINCT col)
02.小文件会造成资源的过度占用以及影响查询效率
问题原因:
-
众所周知,小文件在HDFS中存储本身就会占用过多的内存空间,那么对于MR查询过程中过多的小文件又会造成启动过多的Mapper Task, 每个Mapper都是一个后台线程,会占用JVM的空间
-
在Hive中,动态分区会造成在插入数据过程中,生成过多零碎的小文件(请回忆昨天讲的动态分区的逻辑)
-
不合理的Reducer Task数量的设置也会造成小文件的生成,因为最终Reducer是将数据落地到HDFS中的
-
Hive中分桶表的设置
解决方案:
在数据源头HDFS中控制小文件产生的个数,比如
-
采用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件(常见于在流计算的时候采用Sequencefile格式进行存储)
-
减少reduce的数量(可以使用参数进行控制)
-
慎重使用动态分区,最好在分区中指定分区字段的val值
最好数据的校验工作,比如通过脚本方式检测hive表的文件数量,并进行文件合并合并多个文件数据到一个文件中,重新构建表
03.请慎重使用SELECT(*)
问题原因:
在大数据量多字段的数据表中,如果使用 SELECT * 方式去查询数据,会造成很多无效数据的处理,会占用程序资源,造成资源的浪费
解决方案:
在查询数据表时,指定所需的待查字段名,而非使用 * 号
04.不要在表关联后面加WHERE条件
原因:
比如以下语句:
SELECT * FROM stu as t LEFT JOIN course as t1ON t.id=t2.stu_idWHERE t.age=18;
请思考上面语句是否具有优化的空间?如何优化?
解决方案:
采用谓词下推的技术,提早进行过滤有可能减少必须在数据库分区之间传递的数据量
谓词下推的解释:
所谓谓词下推就是通过嵌套的方式,将底层查询语句尽量推到数据底层去过滤,这样在上层应用中就可以使用更少的数据量来查询,这种SQL技巧被称为谓词下推(Predicate pushdown)
那么上面语句就可以采用这种方式来处理:
SELECT * FROM (SELECT * FROM stu WHERE age=18) as t LEFT JOIN course AS t1 on t.id=t1.stu_id
05.处理掉字段中带有空值的数据
问题原因:
一个表内有许多空值时会导致MapReduce过程中,空成为一个key值,对应的会有大量的value值, 而一个key的value会一起到达reduce造成内存不足
解决方式:
1、在查询的时候,过滤掉所有为NULL的数据,比如:
create table res_tbl as select n.* from (select * from res where id is not null ) n left join org_tbl o on n.id = o.id;
2、查询出空值并给其赋上随机数,避免了key值为空(数据倾斜中常用的一种技巧)
create table res_tbl asselect n.* from res n full join org_tbl o on case when n.id is null then concat('hive', rand()) else n.id end = o.id;
06.设置并行执行任务数
通过设置参数 hive.exec.parallel 值为 true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。
//打开任务并行执行
-
set hive.exec.parallel=true;
//同一个 sql 允许最大并行度,默认为 8
-
set hive.exec.parallel.thread.number=16;
07.设置合理的Reducer数量
原因:
-
过多的启动和初始化 reduce 也会消耗时间和资源
-
有多少个Reduer就会有多少个文件产生,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题
解决方案:
Reducer设置的原则:
每个Reduce处理的数据默认是256MB
-
hive.exec.reducers.bytes.per.reducer=256000000
每个任务最大的reduce数,默认为1009
-
hive.exec.reducers.max=1009
计算reduce数的公式
N=min(每个任务最大的reduce数,总输入数据量/reduce处理数据量大小)
设置Reducer的数量
-
set mapreduce.job.reduces=n
08.JVM重用
JVM重用是Hadoop中调优参数的内容,该方式对Hive的性能也有很大的帮助,特别对于很难避免小文件的场景或者Task特别多的场景,这类场景大数据书执行时间都很短
Hadood的默认配置通常是使用派生JVM来执行map和reduce任务的,会造成JVM的启动过程比较大的开销,尤其是在执行Job包含有成百上千个task任务的情况。
JVM重用可以使得JVM实例在同一个job中重新使用N次,N的值可以在hadoop的mapred-site.xml文件中进行设置
-
mapred.job.reuse.jvm.num.tasks10
09.为什么任务执行的时候只有一个reduce?
原因:
使用了Order by (Order By是会进行全局排序)
直接COUNT(1),没有加GROUP BY,比如:
有笛卡尔积操作
SELECT COUNT(1) FROM tbl WHERE pt=’202109’
解决方案:
避免使用全局排序,可以使用sort by进行局部排序
使用GROUP BY进行统计,不会进行全局排序,比如:
-
SELECT pt,COUNT(1) FROM tbl WHERE pt=’202109’group by pt;
10.选择使用Tez引擎
Tez: 是基于Hadoop Yarn之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。它把Map/Reduce过程拆分成若干个子过程,同时可以把多个Map/Reduce任务组合成一个较大的DAG任务,减少了Map/Reduce之间的文件存储。同时合理组合其子过程,也可以减少任务的运行时间
虽然现在最新版本的Hive默认其实支持的Tez引擎, 但是很多人或者大部分人往往还是希望用MR引擎,特别是在Tez报错,然后MR运行正常的时候
设置
-
hive.execution.engine = tez;
通过上述设置,执行的每个HIVE查询都将利用Tez
当然,也可以选择使用spark作为计算引擎
11.选择使用本地模式
有时候Hive处理的数据量非常小,那么在这种情况下,为查询出发执行任务的时间消耗可能会比实际job的执行时间要长,对于大多数这种情况,hive可以通过本地模式在单节点上处理所有任务,对于小数据量任务可以大大的缩短时间
可以通过
-
hive.exec.mode.local.auto=true
12.选择使用严格模式
Hive提供了一种严格模式,可以防止用户执行那些可能产生意想不到的不好的影响查询
比如:
-
对于分区表,除非WHERE语句中含有分区字段过滤条件来限制数据范围,否则不允许执行,也就是说不允许扫描所有分区
-
使用ORDER BY 语句进行查询是,必须使用LIMIT语句,因为ORDER BY 为了执行排序过程会将所有结果数据分发到同一个reduce中进行处理,强制要求用户添加LIMIT可以防止reducer额外的执行很长时间
严格模式的配置:
-
hive.mapred.mode=strict
好了,以上这十二条虽然不多,并且看起来简单,你可以作为一种复习来看,那么对于刚开始做不久的同学,可以将这些技巧严格的执行在日常工作中,并且希望你具备一定的调优的意识。
如果想进一步交流的话,欢迎加我 V:kubedata
我们宗旨:分享创造价值、交流促进成长,欢迎关注:云原生大数据技术荟