开源模型应用落地-CodeQwen模型小试-小试牛刀(一)

 一、前言

    代码专家模型是基于人工智能的先进技术,它能够自动分析和理解大量的代码库,并从中学习常见的编码模式和最佳实践。这种模型可以提供准确而高效的代码建议,帮助开发人员在编写代码时避免常见的错误和陷阱。

    通过学习代码专家模型,开发人员可以获得高效、准确和个性化的代码支持。这不仅可以提高工作效率,还可以在不同的技术环境中简化软件开发工作流程。代码专家模型的引入将为开发人员带来更多的机会去关注创造性的编程任务,从而推动软件开发的创新和进步。


二、术语

2.1.CodeQwen1.5

    基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了非凡的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。

CodeQwen 是基础的 Coder

    代码生成是大语言模型的关键能力之一,期待模型将自然语言指令转换为具有精确的、可执行的代码。仅拥有 70 亿参数的 CodeQwen1.5 在基础代码生成能力上已经超过了更尺寸的模型,进一步缩小了开源 CodeLLM 和 GPT-4 之间编码能力的差距。

CodeQwen 是长序列 Coder

    长序列能力对于代码模型来说至关重要,是理解仓库级别代码、成为 Code Agent 的核心能力。而当前的代码模型对于长度的支持仍然非常有限,阻碍了其实际应用的潜力。CodeQwen1.5 希望进一步推进开源代码模型在长序列建模上的进展,我们收集并构造了仓库级别的长序列代码数据进行预训练,通过精细的数据配比和组织方式,使其最终可以最长支持 64K 的输入长度。

CodeQwen 是优秀的代码修改者

    一个好的代码助手不仅可以根据指令生成代码,还能够针对已有代码或者新的需求进行修改或错误修复。

CodeQwen 是出色的 SQL 专家

    CodeQwen1.5 可以作为一个智能的 SQL 专家,弥合了非编程专业人士与高效数据交互之间的差距。它通过自然语言使无编程专业知识的用户能够查询数据库,从而缓解了与SQL相关的陡峭学习曲线。

2.2.CodeQwen1.5-7B-Chat

CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes.

  • Strong code generation capabilities and competitve performance across a series of benchmarks;
  • Supporting long context understanding and generation with the context length of 64K tokens;
  • Supporting 92 coding languages
  • Excellent performance in text-to-SQL, bug fix, etc.

三、前置条件

3.1.基础环境

操作系统:centos7

Tesla V100-SXM2-32GB  CUDA Version: 12.2

3.2.下载模型

huggingface:

https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/tree/main

ModelScope:

git clone https://www.modelscope.cn/qwen/CodeQwen1.5-7B-Chat.git

PS:

1. 根据实际情况选择不同规格的模型

3.3.更新transformers库

pip install --upgrade transformers==4.38.1

四、使用方式

4.1.生成代码能力

# -*-  coding = utf-8 -*-
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

device = "cuda" 

modelPath='/model/CodeQwen1.5-7B-Chat'

def loadTokenizer():
    # print("loadTokenizer: ", modelPath)
    tokenizer = AutoTokenizer.from_pretrained(modelPath)
    return tokenizer

def loadModel(config):
    print("loadModel: ",modelPath)
    model = AutoModelForCausalLM.from_pretrained(
        modelPath,
        torch_dtype="auto",
        device_map="auto"
    )
    model.generation_config = config
    return model


if __name__ == '__main__':
    prompt = "用Python写一个冒泡排序算法的例子"
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]

    config = GenerationConfig.from_pretrained(modelPath, top_p=0.9, temperature=0.7, repetition_penalty=1.1,
                                              do_sample=True, max_new_tokens=8192)
    tokenizer = loadTokenizer()
    model = loadModel(config)

    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(
        model_inputs.input_ids
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)

调用结果:

在IDEA中运行模型生成的代码

结论:

模型能根据需求生成可运行代码

4.2.修改代码的能力

示例说明:

把冒泡排序正确的代码故意修改为错误,异常为:UnboundLocalError: local variable 'j' referenced before assignment

# -*-  coding = utf-8 -*-
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

device = "cuda" 

modelPath='/model/CodeQwen1.5-7B-Chat'

def loadTokenizer():
    # print("loadTokenizer: ", modelPath)
    tokenizer = AutoTokenizer.from_pretrained(modelPath)
    return tokenizer

def loadModel(config):
    # print("loadModel: ",modelPath)
    model = AutoModelForCausalLM.from_pretrained(
        modelPath,
        torch_dtype="auto",
        device_map="auto"
    )
    model.generation_config = config
    return model


if __name__ == '__main__':
    prompt = '''
我用Python写了一个冒泡排序的算法例子,但是运行结果不符合预期,请修改,具体代码如下:
def bubble_sort(nums):
    n = len(nums)
    for i in range(n):
        for j in range(0, n-i-1):
            if nums[j] < nums[j+1]:
                nums[j], nums[j+1] = nums[j+1], nums[j]
    return nums

if __name__ == "__main__":
    unsorted_list = [64, 34, 25, 12, 22, 11, 90]
    print("原始列表:", unsorted_list)
    sorted_list = bubble_sort(unsorted_list)
    print("排序后的列表:", sorted_list)         
'''
    
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]

    config = GenerationConfig.from_pretrained(modelPath, top_p=0.9, temperature=0.7, repetition_penalty=1.1,
                                              do_sample=True, max_new_tokens=8192)
    tokenizer = loadTokenizer()
    model = loadModel(config)

    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(
        model_inputs.input_ids
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(response)

调用结果:

结论:

模型能发现问题,并把异常修正


五、附带说明

5.1、线上体验地址

https://huggingface.co/spaces/Qwen/CodeQwen1.5-7b-Chat-demo

魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。icon-default.png?t=N7T8https://modelscope.cn/studios/qwen/CodeQwen1.5-7b-Chat-demo/summary

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/597108.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络知识】光猫、路由器 和 交换机 的作用和区别?

数字信号&#xff1a;是指自变量是离散的、因变量也是离散的信号&#xff0c;这种信号的自变量用整数表示&#xff0c;因变量用有限数字中的一个数字来表示。在计算机中&#xff0c;数字信号的大小常用有限位的二进制数表示。 模拟信号&#xff1a;模拟信号是指用连续变化的物…

学习c#第26天 面向对象基础之类与对象

1.类 1.什么是类? 俗话说&#xff0c;“物以类聚&#xff0c;人以群分”。意思是同类的东西经常聚在一起&#xff0c;志同道合 的人相聚成群。前者说物&#xff0c;后者说人。这里以物来进行举例说明[见图]&#xff1a; 水果超市&#xff0c;所有同类的水果摆放在一起&#xf…

【机器学习与实现】线性回归分析

目录 一、相关和回归的概念&#xff08;一&#xff09;变量间的关系&#xff08;二&#xff09;Pearson&#xff08;皮尔逊&#xff09;相关系数 二、线性回归的概念和方程&#xff08;一&#xff09;回归分析概述&#xff08;二&#xff09;线性回归方程 三、线性回归模型的损…

vivado刷题笔记46

题目&#xff1a; Design a 1-12 counter with the following inputs and outputs: Reset Synchronous active-high reset that forces the counter to 1 Enable Set high for the counter to run Clk Positive edge-triggered clock input Q[3:0] The output of the counter c…

场外个股期权和场内个股期权的优缺点是什么?

场外个股期权和场内个股期权的优缺点 场外个股期权是指在沪深交易所之外交易的个股期权&#xff0c;其本质是一种金融衍生品&#xff0c;允许投资者在股票交易场所外以特定价格买进或卖出证券。场内个股期权是以单只股票作为标的资产的期权合约&#xff0c;其内在价值是基于标…

金融业开源软件应用 管理指南

金融业开源软件应用 管理指南 1 范围 本文件提供了金融机构在应用开源软件时的全流程管理指南&#xff0c;对开源软件的使用和管理提供了配套 组织架构、配套管理规章制度、生命周期流程管理、风险管理、存量管理、工具化管理等方面的指导。 本文件适用于金融机构规范自身对开…

工业物联网技术在生产流程中的应用及优势与挑战——青创智通

工业物联网解决方案-工业IOT-青创智通 随着科技的不断发展&#xff0c;物联网技术逐渐渗透到各个行业中&#xff0c;尤其是在工业领域&#xff0c;工业物联网的应用正在逐步重塑生产流程。本文将探讨工业物联网如何影响生产流程&#xff0c;并分析其带来的优势和挑战。 一、工…

Amazon Bedrock的进化:更多选择与新特性,助力生成式AI应用更快落地

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

leetcode-没有重复项的全排列-97

题目要求 思路 1.递归&#xff0c;如果num和n的元素个数一样就可以插入res中了&#xff0c;这个作为递归的结束条件 2.因为这个题是属于排列&#xff0c;并非组合&#xff0c;两者的区别是排列需要把之前插入的元素在回退会去&#xff0c;而组合不需要&#xff0c;因此会存在一…

YPay源支付Mini Pro免授权使用版v1.0

YPay源支付Mini Pro免授权使用版v1.0 &#xff0c;修改host屏蔽Pro授权站&#xff0c;可有效防止因用户操作不当导致免授权程序无法执行时 执行授权官方的盗版入库代码&#xff0c;尽可能保证网站安全 1.安装SG14组件 注&#xff1a;仅防止二次开发添加授权 2.”/etc/host”文…

尊享面试100题(314.二叉树的垂直遍历python)

题目关键词&#xff0c;从左到右&#xff0c;从上到下&#xff0c;那么使用bfs宽度优先算法。 使用字典v保存每一列的值。 class Solution:def verticalOrder(self, root: Optional[TreeNode]) -> List[List[int]]:if not root: return []v defaultdict(list)qu deque()…

淘宝扭蛋机小程序开发:开启你的惊喜之旅

一、扭出新世界&#xff0c;惊喜不断 在这个充满无限可能的数字时代&#xff0c;淘宝扭蛋机小程序为你带来了一种全新的购物与娱乐体验。扭蛋机&#xff0c;这个充满童趣和惊喜的玩具&#xff0c;如今在我们的小程序中焕发出新的活力&#xff0c;为你带来一波又一波的惊喜与快…

WES-100B液晶数显式液压万能试验机

一、简介 主机为两立柱、两丝杠、油缸下置式&#xff0c;拉伸空间位于主机的上方&#xff0c;压缩、弯曲试验空间位于主机下横梁和工作台之间。测力仪表采用高清液晶显示屏&#xff0c;实验数据方便直观。 二、 传动系统 下横梁升降采用电机经减速器、链传动机构、丝杠副传动…

Redis开源社区持续壮大,华为云为Valkey项目注入新的活力

背景 今年3月21日&#xff0c;Redis Labs宣布从Redis 7.4版本开始&#xff0c;将原先比较宽松的BSD源码使用协议修改为RSAv2和SSPLv1协议&#xff0c;意味着 Redis在OSI&#xff08;开放源代码促进会&#xff09;定义下不再是严格的开源产品。Redis官方表示&#xff0c;开发者…

QT--1

类型界面 #include "mywidget.h"myWidget::myWidget(QWidget *parent): QWidget(parent) {//窗口相关设置this->resize(680,520);this->setFixedSize(680,520);this->setWindowTitle("Tim");this->setWindowFlag(Qt::FramelessWindowHint);th…

Git -- reset 详解

引言 当我们在项目中有多个人协同开发时候&#xff0c;难免会出现一些错误的提交或者删除了一些重要文件。我们需要回滚到指定的某一个节点。那些乱七八糟的各种提交都要清除掉。 这时候&#xff0c;我们的指令就要用到了。reset 正文 git reset。它的一句话概括 git-reset …

【C++之map的应用】

C学习笔记---021 C之map的应用1、map的简单介绍1.1、基本概念1.2、map基本特性 2、map的基本操作2.1、插入元素2.2、访问元素2.3、删除元素2.4、遍历map2.5、检查元素是否存在2.6、获取map的大小2.7、清空map2.8、基本样例 3、map的基础模拟实现4、测试用例4.1、插入和遍历4.2、…

Unreal游戏GPU性能优化检测模式全新上线

UWA已经在去年推出了针对于Unity项目的GPU性能优化工具&#xff0c;通过对GPU渲染性能、带宽性能以及各种下探指标&#xff0c;帮助Unity项目研发团队定位由GPU导致的发热耗电问题。这个需求在Unreal团队中也极为强烈&#xff0c;因此UWA将该功能移植到针对Unreal项目的GOT Onl…

react + xlsx 表格导出功能 全部实现

需求 : 在react中将表格多样化导出 , 既可以全部导出所有表格数据 , 也可以选择性导出 导出可以选择三种样式 选择了全部 , 不能选其他 全部导出 部分导出 1 导出按钮下拉弹出三种导出格式 <Dropdownmenu{{items: [{label: (<aonClick{() > {setFormat(xlsx)}}>…

零基础编程学python:如何从零开始学习并使用Python编程语言

零基础编程学python&#xff1a;如何从零开始学习并使用Python编程语言 Python是一种非常流行的编程语言&#xff0c;由于其简单的语法和强大的功能&#xff0c;使其成为初学者和专业开发者的首选。无论您是数据科学家、网络开发者还是自动化工程师&#xff0c;Python都能提供必…