Voice Conversion、DreamScene、X-SLAM、Panoptic-SLAM、DiffMap、TinySeg

本文首发于公众号:机器感知

Voice Conversion、DreamScene、X-SLAM、Panoptic-SLAM、DiffMap、TinySeg

图片

Converting Anyone's Voice: End-to-End Expressive Voice Conversion with a  Conditional Diffusion Model

图片

Expressive voice conversion (VC) conducts speaker identity conversion for emotional speakers by jointly converting speaker identity and emotional style. Emotional style modeling for arbitrary speakers in expressive VC has not been extensively explored. Previous approaches have relied on vocoders for speech reconstruction, which makes speech quality heavily dependent on the performance of vocoders. A major challenge of expressive VC lies in emotion prosody modeling. To address these challenges, this paper proposes a fully end-to-end expressive VC framework based on a conditional denoising diffusion probabilistic model (DDPM). We utilize speech units derived from self-supervised speech models as content conditioning, along with deep features extracted from speech emotion recognition and speaker verification systems to model emotional style and speaker identity. Objective and subjective evaluations show the effectiveness of our framework. Codes and samples are publicly available......

DreamScene4D: Dynamic Multi-Object Scene Generation from Monocular  Videos

图片

Existing VLMs can track in-the-wild 2D video objects while current generative models provide powerful visual priors for synthesizing novel views for the highly under-constrained 2D-to-3D object lifting. Building upon this exciting progress, we present DreamScene4D, the first approach that can generate three-dimensional dynamic scenes of multiple objects from monocular in-the-wild videos with large object motion across occlusions and novel viewpoints. Our key insight is to design a "decompose-then-recompose" scheme to factorize both the whole video scene and each object's 3D motion. We first decompose the video scene by using open-vocabulary mask trackers and an adapted image diffusion model to segment, track, and amodally complete the objects and background in the video. Each object track is mapped to a set of 3D Gaussians that deform and move in space and time. We also factorize the observed motion into multiple components to handle fast motion. The camera motion can be infe......

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD

图片

We present X-SLAM, a real-time dense differentiable SLAM system that leverages the complex-step finite difference (CSFD) method for efficient calculation of numerical derivatives, bypassing the need for a large-scale computational graph. The key to our approach is treating the SLAM process as a differentiable function, enabling the calculation of the derivatives of important SLAM parameters through Taylor series expansion within the complex domain. Our system allows for the real-time calculation of not just the gradient, but also higher-order differentiation. This facilitates the use of high-order optimizers to achieve better accuracy and faster convergence. Building on X-SLAM, we implemented end-to-end optimization frameworks for two important tasks: camera relocalization in wide outdoor scenes and active robotic scanning in complex indoor environments. Comprehensive evaluations on public benchmarks and intricate real scenes underscore the improvements in the accuracy of cam......

Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic  Segmentation

图片

The majority of visual SLAM systems are not robust in dynamic scenarios. The ones that deal with dynamic objects in the scenes usually rely on deep-learning-based methods to detect and filter these objects. However, these methods cannot deal with unknown moving objects. This work presents Panoptic-SLAM, an open-source visual SLAM system robust to dynamic environments, even in the presence of unknown objects. It uses panoptic segmentation to filter dynamic objects from the scene during the state estimation process. Panoptic-SLAM is based on ORB-SLAM3, a state-of-the-art SLAM system for static environments. The implementation was tested using real-world datasets and compared with several state-of-the-art systems from the literature, including DynaSLAM, DS-SLAM, SaD-SLAM, PVO and FusingPanoptic. For example, Panoptic-SLAM is on average four times more accurate than PVO, the most recent panoptic-based approach for visual SLAM. Also, experiments were performed using a quadruped ro......

Characterized Diffusion and Spatial-Temporal Interaction Network for  Trajectory Prediction in Autonomous Driving

图片

Trajectory prediction is a cornerstone in autonomous driving (AD), playing a critical role in enabling vehicles to navigate safely and efficiently in dynamic environments. To address this task, this paper presents a novel trajectory prediction model tailored for accuracy in the face of heterogeneous and uncertain traffic scenarios. At the heart of this model lies the Characterized Diffusion Module, an innovative module designed to simulate traffic scenarios with inherent uncertainty. This module enriches the predictive process by infusing it with detailed semantic information, thereby enhancing trajectory prediction accuracy. Complementing this, our Spatio-Temporal (ST) Interaction Module captures the nuanced effects of traffic scenarios on vehicle dynamics across both spatial and temporal dimensions with remarkable effectiveness. Demonstrated through exhaustive evaluations, our model sets a new standard in trajectory prediction, achieving state-of-the-art (SOTA) results on t......

Probablistic Restoration with Adaptive Noise Sampling for 3D Human Pose  Estimation

图片

The accuracy and robustness of 3D human pose estimation (HPE) are limited by 2D pose detection errors and 2D to 3D ill-posed challenges, which have drawn great attention to Multi-Hypothesis HPE research. Most existing MH-HPE methods are based on generative models, which are computationally expensive and difficult to train. In this study, we propose a Probabilistic Restoration 3D Human Pose Estimation framework (PRPose) that can be integrated with any lightweight single-hypothesis model. Specifically, PRPose employs a weakly supervised approach to fit the hidden probability distribution of the 2D-to-3D lifting process in the Single-Hypothesis HPE model and then reverse-map the distribution to the 2D pose input through an adaptive noise sampling strategy to generate reasonable multi-hypothesis samples effectively. Extensive experiments on 3D HPE benchmarks (Human3.6M and MPI-INF-3DHP) highlight the effectiveness and efficiency of PRPose. Code is available at: https://github.com......

DiffMap: Enhancing Map Segmentation with Map Prior Using Diffusion Model

图片

Constructing high-definition (HD) maps is a crucial requirement for enabling autonomous driving. In recent years, several map segmentation algorithms have been developed to address this need, leveraging advancements in Bird's-Eye View (BEV) perception. However, existing models still encounter challenges in producing realistic and consistent semantic map layouts. One prominent issue is the limited utilization of structured priors inherent in map segmentation masks. In light of this, we propose DiffMap, a novel approach specifically designed to model the structured priors of map segmentation masks using latent diffusion model. By incorporating this technique, the performance of existing semantic segmentation methods can be significantly enhanced and certain structural errors present in the segmentation outputs can be effectively rectified. Notably, the proposed module can be seamlessly integrated into any map segmentation model, thereby augmenting its capability to accurately d......

TinySeg: Model Optimizing Framework for Image Segmentation on Tiny  Embedded Systems

图片

Image segmentation is one of the major computer vision tasks, which is applicable in a variety of domains, such as autonomous navigation of an unmanned aerial vehicle. However, image segmentation cannot easily materialize on tiny embedded systems because image segmentation models generally have high peak memory usage due to their architectural characteristics. This work finds that image segmentation models unnecessarily require large memory space with an existing tiny machine learning framework. That is, the existing framework cannot effectively manage the memory space for the image segmentation models. This work proposes TinySeg, a new model optimizing framework that enables memory-efficient image segmentation for tiny embedded systems. TinySeg analyzes the lifetimes of tensors in the target model and identifies long-living tensors. Then, TinySeg optimizes the memory usage of the target model mainly with two methods: (i) tensor spilling into local or remote storage and (ii) ......

Efficient and Economic Large Language Model Inference with Attention  Offloading

图片

Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficienc......

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/595536.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【爬虫】爬取A股数据写入数据库(一)

1. 对东方财富官网的分析 步骤: 通过刷新网页,点击等操作,我们发现https://datacenter-web.eastmoney.com/api/data/v1/get?请求后面带着一些参数即可以获取到相应数据。我们使用python来模拟这个请求即可。 我们以如下选择的页面为切入点…

滑动窗口 | 1652. 拆炸弹 |LeetCode

文章目录 题目介绍暴力(可以过力扣竟然。不愧是简单题):滑动窗口 祝你天天开心 题目介绍 你有一个炸弹需要拆除,时间紧迫!你的情报员会给你一个长度为 n 的 循环 数组 code 以及一个密钥 k 。 为了获得正确的密码,你需要替换掉每…

关系型数据库MySql分库分表带来的问题以及解决方案

水平分表 水平分表是什么? 将一张表横向拆分为多张表,拆分的表,依然在同一个库中。 例如,user表有400w条记录,将user表拆分成4张表,每张表100w条记录。拆分后的表名,分别叫做user_0、user1、u…

内网用户是如何连接上互联网的?详解NAT网络地址转换技术

背景 https://blog.csdn.net/weixin_43972437/article/details/107344633 不知道你有没有过困惑,都说现在 ipv4 地址耗尽了,但是我们为什么还能上网呢?原来这都要归功于 NAT 网络地址转换技术。 比如我们接入了中国移动的宽带,宽…

重学SpringBoot3-SPI机制

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-SPI机制 什么是 SPI?Spring Boot 中的 SPI 机制spring.factories 文件自动配置的实现启动流程中的作用 SPI实际应用步骤 1: 新建模块步骤 2:…

扩展学习|一文读懂知识图谱

一、知识图谱的技术实现流程及相关应用 文献来源:曹倩,赵一鸣.知识图谱的技术实现流程及相关应用[J].情报理论与实践,2015, 38(12):127-132. (一)知识图谱的特征及功能 知识图谱是为了适应新的网络信息环境而产生的一种语义知识组织和服务的方…

HarmonyOS开发案例:【卡片二级联动】

1 卡片介绍 使用ArkTS语言,实现一个导航与内容二级联动的效果。 2 标题 二级联动(ArkTS) 3 介绍 介绍了如何基于List组件实现一个导航和内容的二级联动效果。样例主要包含以下功能: 切换左侧导航,右侧滚动到对应…

自定义类型②③——联合体和枚举

自定义类型②③——联合体和枚举 1.联合体1.1 联合体类型的声明1.2 联合体的特点1.3 相同成员结构体和联合体的对比1.4 联合体大小的计算1.5 联合体的应用①1.5 联合体的应用② 2. 枚举2.1 枚举类型的声明2.2 枚举类型的特点2.3 枚举的优点 1.联合体 1.1 联合体类型的声明 关…

Python sqlite3库 实现 数据库基础及应用 输入地点,可输出该地点的爱国主义教育基地名称和批次的查询结果。

目录 【第11次课】实验十数据库基础及应用1-查询 要求: 提示: 运行结果: 【第11次课】实验十数据库基础及应用1-查询 声明:著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 1.简答题 数据库文件Edu_Base.db&#…

有什么方便的教学口语软件?6个软件教你快速练习口语

有什么方便的教学口语软件?6个软件教你快速练习口语 以下是六个方便实用的教学口语软件,它们可以帮助您快速练习口语: AI外语陪练: 这是一款知名的语言学习软件,提供多种语言的口语练习课程。它采用沉浸式的学习方法&#xff0…

【数字图像处理笔记】Matlab实现图像平滑算法 均值-中值-高斯滤波 (三)

💌 所属专栏:【数字图像处理笔记】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &#x…

jetson实操(二):jetson nano发送短信到指定用户

文章目录 一、准备工作二、代码实现 一、准备工作 腾讯云网址:点击 注:需先申请“短信签名”和“短信正文”,按照要求填写申请即可,腾讯云的审核效率还是很快的,一般在1-2个小时内就会有结果,链接&…

2024-2034年,量子密码市场年增长率将达29.3%

Visiongain发布了一份新报告,题为《2024-2034年量子密码市场报告》:按组件(软件、硬件)、软件(加密算法、密钥管理解决方案等)、硬件(量子密钥分发(QKD)设备、量子随机数…

CkickHouse JDBC 使用整理

1. pom 引入 <dependency><groupId>com.clickhouse</groupId><artifactId>clickhouse-jdbc</artifactId><version>0.4.6</version></dependency><dependency><groupId>org.roaringbitmap</groupId><arti…

BeautifulSoup库TapTap评论爬虫

最近在写关于评论数据主题建模和情感分析的作业&#xff0c;本来想用八爪鱼直接爬TapTap的评论数据&#xff0c;但是自动识别网页总是定位错误&#xff0c;还是回归BeautifulSoup和Request来进行评论内容的爬取&#xff0c;具体操作步骤如下 导入所需的库 import re import r…

定制旁通式孔板流量计需要哪些技术参数

旁通式孔板流量计又称桥式孔板流量计&#xff0c;本产品含有直管&#xff0c;直管中安装有孔板&#xff0c;该孔板两侧的直管壁上分别设置一个测量管&#xff0c;其特征是&#xff1a;所述直管和一个桥管并联式连接&#xff0c;二者内管相互连通&#xff0c;并且所述直管和桥管…

mars3d的config,json文件配置谷歌影像地图的tilingScheme属性

mars3d的config,json文件配置tilingScheme属性说明&#xff1a; 1.cesium加载谷歌影像地图的时候需要配置tilingScheme参数&#xff0c;如以下代码&#xff1a; var viewer new Cesium.Viewer("cesiumContainer", { animation: false, //是否显示动画控件 baseLaye…

64位Office API声明语句第118讲

跟我学VBA&#xff0c;我这里专注VBA, 授人以渔。我98年开始&#xff0c;从源码接触VBA已经20余年了&#xff0c;随着年龄的增长&#xff0c;越来越觉得有必要把这项技能传递给需要这项技术的职场人员。希望职场和数据打交道的朋友&#xff0c;都来学习VBA,利用VBA,起码可以提高…

文件夹加密软件哪个好?文件夹加密软件排行榜

许多人给小编说&#xff0c;我们公司想实现文件私自发出呈乱码状态&#xff0c;这说明公司逐渐认识到文件加密的重要性。 目前&#xff0c;加密软件已经广泛应用于企业办公、商业贸易、个人应用等多个领域&#xff0c;成为保护数据安全和隐私的重要手段。 为了保护企业机密&am…

【driver2】设备读写,同步和互斥,ioctl,进程休眠,时间和延时,延缓

文章目录 1.实现设备读写&#xff1a;write函数中一个进程写没问题&#xff0c;两进程写&#xff1a;第一个进程运行到kzalloc时&#xff0c;第二个进程也执行了kzalloc&#xff0c;只第二个进程地址保存在c中&#xff0c;第一个进程分配内存空间地址丢失造成内存泄漏。第一个进…