Codeforces Round 943 (Div. 3 ABCDEFG1G2题) 视频讲解

A. Maximize?

Problem Statement

You are given an integer x x x. Your task is to find any integer y y y ( 1 ≤ y < x ) (1\le y<x) (1y<x) such that gcd ⁡ ( x , y ) + y \gcd(x,y)+y gcd(x,y)+y is maximum possible.

Note that if there is more than one y y y which satisfies the statement, you are allowed to find any.

gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) is the Greatest Common Divisor of a a a and b b b. For example, gcd ⁡ ( 6 , 4 ) = 2 \gcd(6,4)=2 gcd(6,4)=2.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1000 1 \le t \le 1000 1t1000) — the number of test cases.

Each of the following t t t lines contains a single integer x x x ( 2 ≤ x ≤ 1000 2 \le x \le 1000 2x1000).

Output

For each test case, output any y y y ( 1 ≤ y < x 1 \le y < x 1y<x), which satisfies the statement.

Example

Example

input
7
10
7
21
100
2
1000
6
output
5
6
18
98
1
750
3

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve() {
	int x;
	cin >> x;

	int mx = 0, p;
	for (int y = 1; y < x; y ++) {
		if (__gcd(x, y) + y > mx) {
			mx = __gcd(x, y) + y, p = y;
		}
	}
	cout << p << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

B. Prefiquence

Problem Statement

You are given two binary strings a a a and b b b. A binary string is a string consisting of the characters ‘0’ and ‘1’.

Your task is to determine the maximum possible number k k k such that a prefix of string a a a of length k k k is a subsequence of string b b b.

A sequence a a a is a subsequence of a sequence b b b if a a a can be obtained from b b b by the deletion of several (possibly, zero or all) elements.

Input

The first line consists of a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and m m m ( 1 ≤ n , m ≤ 2 ⋅ 1 0 5 1\le n,m \le 2 \cdot 10^5 1n,m2105) — the length of string a a a and the length of string b b b, respectively.

The second line of each test case contains a binary string a a a of length n n n.

The third line of each test case contains a binary string b b b of length m m m.

It is guaranteed that the sum of values n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105. Similarly, the sum of values m m m over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, output a single number — the maximum k k k, such that the first k k k characters of a a a form a subsequence of b b b.

Example

Example

input
6
5 4
10011
1110
3 3
100
110
1 3
1
111
4 4
1011
1111
3 5
100
11010
3 1
100
0
output
2
2
1
1
3
0

Note

In the first example, the string ‘ 10 10 10’ is a subsequence of ‘ 1 11 0 1\color{red}11\color{red}0 1110’ but the string ‘ 100 100 100’ is not. So the answer is 2 2 2.

In the fifth example, a a a=‘ 100 100 100’, b b b=‘ 1 101 0 1\color{red}{10}1\color{red}0 11010’, whole string a a a is a subsequence of string b b b. So the answer is 3 3 3.

In the sixth example, string b b b does not contain ‘ 1 1 1’ so the answer is 0 0 0.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

int n, m;
string a, b;

bool check(int x) {
	for (int i = 1, j = 0; i <= m; i ++) {
		if (a[j + 1] == b[i])
			j ++;
		if (j == x)
			return 1;
	}
	return 0;
}

void solve() {
	cin >> n >> m >> a >> b;
	a = ' ' + a, b = ' ' + b;

	int l = 0, r = min(n, m);
	while (l < r) {
		int mid = l + r + 1 >> 1;
		if (check(mid)) l = mid;
		else r = mid - 1;
	}
	cout << l << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

C. Assembly via Remainders

Problem Statement

You are given an array x 2 , x 3 , … , x n x_2,x_3,\dots,x_n x2,x3,,xn. Your task is to find any array a 1 , … , a n a_1,\dots,a_n a1,,an, where:

  • 1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109 for all 1 ≤ i ≤ n 1\le i\le n 1in.
  • x i = a i   m o d   a i − 1 x_i=a_i \bmod a_{i-1} xi=aimodai1 for all 2 ≤ i ≤ n 2\le i\le n 2in.

Here c   m o d   d c\bmod d cmodd denotes the remainder of the division of the integer c c c by the integer d d d. For example 5   m o d   2 = 1 5 \bmod 2 = 1 5mod2=1, 72   m o d   3 = 0 72 \bmod 3 = 0 72mod3=0, 143   m o d   14 = 3 143 \bmod 14 = 3 143mod14=3.

Note that if there is more than one a a a which satisfies the statement, you are allowed to find any.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 ) (1\le t\le 10^4) (1t104) — the number of test cases.

The first line of each test case contains a single integer n n n ( 2 ≤ n ≤ 500 ) (2\le n\le 500) (2n500) — the number of elements in a a a.

The second line of each test case contains n − 1 n-1 n1 integers x 2 , … , x n x_2,\dots,x_n x2,,xn ( 1 ≤ x i ≤ 500 ) (1\le x_i\le 500) (1xi500) — the elements of x x x.

It is guaranteed that the sum of values n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case output any a 1 , … , a n a_1,\dots,a_n a1,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109) which satisfies the statement.

Example

input
5
4
2 4 1
3
1 1
6
4 2 5 1 2
2
500
3
1 5
output
3 5 4 9
2 5 11
5 14 16 5 11 24
501 500
2 7 5

Note

In the first test case a = [ 3 , 5 , 4 , 9 ] a=[3,5,4,9] a=[3,5,4,9] satisfies the conditions, because:

  • a 2   m o d   a 1 = 5   m o d   3 = 2 = x 2 a_2\bmod a_1=5\bmod 3=2=x_2 a2moda1=5mod3=2=x2;
  • a 3   m o d   a 2 = 4   m o d   5 = 4 = x 3 a_3\bmod a_2=4\bmod 5=4=x_3 a3moda2=4mod5=4=x3;
  • a 4   m o d   a 3 = 9   m o d   4 = 1 = x 4 a_4\bmod a_3=9\bmod 4=1=x_4 a4moda3=9mod4=1=x4;

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve() {
	int n;
	cin >> n;

	std::vector<int> a(n + 1);
	for (int i = 2; i <= n; i ++)
		cin >> a[i];
	cout << 501 << " ";
	int lst = 501;
	for (int i = 2; i <= n; i ++)
		cout << lst + a[i] << " ", lst += a[i];
	cout << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

D. Permutation Game

Problem Statement

Bodya and Sasha found a permutation p 1 , … , p n p_1,\dots,p_n p1,,pn and an array a 1 , … , a n a_1,\dots,a_n a1,,an. They decided to play a well-known “Permutation game”.

A permutation of length n n n is an array consisting of n n n distinct integers from 1 1 1 to n n n in arbitrary order. For example, [ 2 , 3 , 1 , 5 , 4 ] [2,3,1,5,4] [2,3,1,5,4] is a permutation, but [ 1 , 2 , 2 ] [1,2,2] [1,2,2] is not a permutation ( 2 2 2 appears twice in the array), and [ 1 , 3 , 4 ] [1,3,4] [1,3,4] is also not a permutation ( n = 3 n=3 n=3 but there is 4 4 4 in the array).

Both of them chose a starting position in the permutation.

The game lasts k k k turns. The players make moves simultaneously. On each turn, two things happen to each player:

  • If the current position of the player is x x x, his score increases by a x a_x ax.
  • Then the player either stays at his current position x x x or moves from x x x to p x p_x px.

The winner of the game is the player with the higher score after exactly k k k turns.

Knowing Bodya’s starting position P B P_B PB and Sasha’s starting position P S P_S PS, determine who wins the game if both players are trying to win.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104) — the number of testcases.

The first line of each testcase contains integers n n n, k k k, P B P_B PB, P S P_S PS ( 1 ≤ P B , P S ≤ n ≤ 2 ⋅ 1 0 5 1\le P_B,P_S\le n\le 2\cdot 10^5 1PB,PSn2105, 1 ≤ k ≤ 1 0 9 1\le k\le 10^9 1k109) — length of the permutation, duration of the game, starting positions respectively.

The next line contains n n n integers p 1 , … , p n p_1,\dots,p_n p1,,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1pin) — elements of the permutation p p p.

The next line contains n n n integers a 1 , … , a n a_1,\dots,a_n a1,,an ( 1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109) — elements of array a a a.

It is guaranteed that the sum of values of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each testcase output:

  • “Bodya” if Bodya wins the game.
  • “Sasha” if Sasha wins the game.
  • “Draw” if the players have the same score.

Example

Example

input
10
4 2 3 2
4 1 2 3
7 2 5 6
10 8 2 10
3 1 4 5 2 7 8 10 6 9
5 10 5 1 3 7 10 15 4 3
2 1000000000 1 2
1 2
4 4
8 10 4 1
5 1 4 3 2 8 6 7
1 1 2 1 2 100 101 102
5 1 2 5
1 2 4 5 3
4 6 9 4 2
4 2 3 1
4 1 3 2
6 8 5 3
6 9 5 4
6 1 3 5 2 4
6 9 8 9 5 10
4 8 4 2
2 3 4 1
5 2 8 7
4 2 3 1
4 1 3 2
6 8 5 3
2 1000000000 1 2
1 2
1000000000 2
output
Bodya
Sasha
Draw
Draw
Bodya
Sasha
Sasha
Sasha
Sasha
Bodya

Note

Below you can find the explanation for the first testcase, where the game consists of k = 2 k=2 k=2 turns.

TurnBodya’s positionBodya’s scoreBodya’s moveSasha’s positionSasha’s scoreSasha’s move
first 3 3 3 0 + a 3 = 0 + 5 = 5 0 + a_3 = 0 + 5 = 5 0+a3=0+5=5stays on the same position 2 2 2 0 + a 2 = 0 + 2 = 2 0 + a_2 = 0 + 2 = 2 0+a2=0+2=2moves to p 2 = 1 p_2=1 p2=1
second 3 3 3 5 + a 3 = 5 + 5 = 10 5 + a_3 = 5 + 5 = 10 5+a3=5+5=10stays on the same position 1 1 1 2 + a 1 = 2 + 7 = 9 2 + a_1 = 2 + 7 = 9 2+a1=2+7=9stays on the same position
final results 3 3 3 10 10 10 1 1 1 9 9 9

As we may see, Bodya’s score is greater, so he wins the game. It can be shown that Bodya always can win this game.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, k, pb, ps;
int a[N], p[N];
int vis[N];

void solve() {
	cin >> n >> k >> pb >> ps;

	for (int i = 1; i <= n; i ++)
		cin >> p[i];
	for (int i = 1; i <= n; i ++)
		cin >> a[i];

	int r1 = 0, tot = 0, r2 = 0, left = k;
	for (int i = 1; i <= n; i ++) vis[i] = 0;
	while (!vis[pb] && left) {
		vis[pb] = 1, tot += a[pb], left --;
		r1 = max(tot + left * a[pb], r1), pb = p[pb];
	}
	for (int i = 1; i <= n; i ++) vis[i] = 0;
	left = k, tot = 0;
	while (!vis[ps] && left) {
		vis[ps] = 1, tot += a[ps], left --;
		r2 = max(tot + left * a[ps], r2), ps = p[ps];
	}

	// cout << r1 << " " << r2 << endl;
	if (r1 == r2) cout << "Draw" << endl;
	else if (r1 > r2) cout << "Bodya" << endl;
	else cout << "Sasha" << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

E. Cells Arrangement

Problem Statement

You are given an integer n n n. You choose n n n cells ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1), (x_2,y_2),\dots,(x_n,y_n) (x1,y1),(x2,y2),,(xn,yn) in the grid n × n n\times n n×n where 1 ≤ x i ≤ n 1\le x_i\le n 1xin and 1 ≤ y i ≤ n 1\le y_i\le n 1yin.

Let H \mathcal{H} H be the set of distinct Manhattan distances between any pair of cells. Your task is to maximize the size of H \mathcal{H} H. Examples of sets and their construction are given in the notes.

If there exists more than one solution, you are allowed to output any.

Manhattan distance between cells ( x 1 , y 1 ) (x_1,y_1) (x1,y1) and ( x 2 , y 2 ) (x_2,y_2) (x2,y2) equals ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ |x_1-x_2|+|y_1-y_2| x1x2+y1y2.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 50 1\le t\le 50 1t50) — the number of test cases.

Each of the following t t t lines contains a single integer n n n ( 2 ≤ n ≤ 1 0 3 2\le n\le 10^3 2n103).

Output

For each test case, output n n n points which maximize the size of H \mathcal{H} H. It is not necessary to output an empty line at the end of the answer for each test case.

Example

Example

input
5
2
3
4
5
6
output
1 1
1 2

2 1
2 3
3 1

1 1
1 3
4 3
4 4

1 1
1 3
1 4
2 1
5 5

1 4
1 5
1 6
5 2
5 5
6 1

Note

In the first testcase we have n = 2 n=2 n=2. One of the possible arrangements is:

The arrangement with cells located in ( 1 , 1 ) (1,1) (1,1) and ( 1 , 2 ) (1,2) (1,2).

In this case H = { ∣ 1 − 1 ∣ + ∣ 1 − 1 ∣ , ∣ 1 − 1 ∣ + ∣ 2 − 2 ∣ , ∣ 1 − 1 ∣ + ∣ 1 − 2 ∣ } = { 0 , 0 , 1 } = { 0 , 1 } \mathcal{H}=\{|1-1|+|1-1|,|1-1|+|2-2|,|1-1|+|1-2|\}=\{0,0,1\}=\{0,1\} H={∣11∣+∣11∣,∣11∣+∣22∣,∣11∣+∣12∣}={0,0,1}={0,1}. Hence, the size of H \mathcal{H} H is 2 2 2. It can be shown that it is the greatest possible answer.

In the second testcase we have n = 3 n=3 n=3. The optimal arrangement is:

The arrangement with cells located in ( 2 , 1 ) (2,1) (2,1), ( 2 , 3 ) (2,3) (2,3) and ( 3 , 1 ) (3,1) (3,1).

H \mathcal{H} H= { ∣ 2 − 2 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 2 ∣ + ∣ 3 − 3 ∣ , ∣ 3 − 3 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 2 ∣ + ∣ 1 − 3 ∣ , ∣ 2 − 3 ∣ + ∣ 1 − 1 ∣ , ∣ 2 − 3 ∣ + ∣ 3 − 1 ∣ } \{|2-2|+|1-1|,|2-2|+|3-3|,|3-3|+|1-1|,|2-2|+|1-3|,|2-3|+|1-1|,|2-3|+|3-1|\} {∣22∣+∣11∣,∣22∣+∣33∣,∣33∣+∣11∣,∣22∣+∣13∣,∣23∣+∣11∣,∣23∣+∣31∣}= { 0 , 0 , 0 , 2 , 1 , 3 } \{0,0,0,2,1,3\} {0,0,0,2,1,3}= { 0 , 1 , 2 , 3 } \{0,1,2,3\} {0,1,2,3}.

For n = 4 n=4 n=4 a possible arrangement is:

For n = 5 n=5 n=5 a possible arrangement is:

For n = 6 n=6 n=6 a possible arrangement is:

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 7;

int n;
bool vis[N][N], res[N][N];
int mx;

void dfs(int u) {
	if (!u) {
		set<int> s;
		std::vector<PII> point;
		for (int i = 1; i <= n; i ++)
			for (int j = 1; j <= n; j ++)
				if (vis[i][j])
					point.emplace_back(i, j);
			for (auto i : point)
				for (auto j : point)
					s.insert(abs(i.fi - j.fi) + abs(i.se - j.se));
		if (s.size() > mx) {
			mx = s.size();
			memcpy(res, vis, sizeof vis);
		}
		return;
	}
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++)
			if (!vis[i][j]) {
				vis[i][j] = 1;
				dfs(u - 1);
				vis[i][j] = 0;
			}
}

void solve() {
	cin >> n;

	if (n == 2) {
		cout << "1 2\n2 2\n";
	} else {
		for (int i = 1; i <= n - 2; i ++)
			cout << 1 << " " << i << endl;
		cout << 2 << " " << n << endl << n << " " << n << endl;
	}
	cout << endl;

	// set<int> s;
	// std::vector<PII> point;
	// int x, y;
	// for (int i = 1; i <= n; i ++)
	// 	cin >> x >> y, point.emplace_back(x, y);
	// for (auto i : point)
	// 	for (auto j : point)
	// 		s.insert(abs(i.fi - j.fi) + abs(i.se - j.se));
	// cout << s.size() << endl;

	// mx = 0;
	// dfs(n);
	// for (int i = 1; i <= n; i ++)
	// 	for (int j = 1; j <= n; j ++)
	// 		if (res[i][j])
	// 			cout << i << " " << j << endl;
	// cout << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

F. Equal XOR Segments

Problem Statement

Let us call an array x 1 , … , x m x_1,\dots,x_m x1,,xm interesting if it is possible to divide the array into k > 1 k>1 k>1 parts so that bitwise XOR of values from each part are equal.

More formally, you must split array x x x into k k k consecutive segments, each element of x x x must belong to exactly 1 1 1 segment. Let y 1 , … , y k y_1,\dots,y_k y1,,yk be the XOR of elements from each part respectively. Then y 1 = y 2 = ⋯ = y k y_1=y_2=\dots=y_k y1=y2==yk must be fulfilled.

For example, if x = [ 1 , 1 , 2 , 3 , 0 ] x = [1, 1, 2, 3, 0] x=[1,1,2,3,0], you can split it as follows: [ 1 ] , [ 1 ] , [ 2 , 3 , 0 ] [\color{blue}1], [\color{green}1], [\color{red}2, \color{red}3, \color{red}0] [1],[1],[2,3,0]. Indeed 1 = 1 = 2 ⊕ 3 ⊕ 0 \color{blue}1=\color{green}1=\color{red}2 \oplus \color{red}3\oplus \color{red}0 1=1=230.

You are given an array a 1 , … , a n a_1,\dots,a_n a1,,an. Your task is to answer q q q queries:

  • For fixed l l l, r r r, determine whether the subarray a l , a l + 1 , … , a r a_l,a_{l+1},\dots,a_r al,al+1,,ar is interesting.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1\le t\le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and q q q ( 2 ≤ n ≤ 2 ⋅ 1 0 5 2 \le n \le 2 \cdot 10^5 2n2105, 1 ≤ q ≤ 2 ⋅ 1 0 5 1 \le q \le 2 \cdot 10^5 1q2105) — the number of elements in the array and the number of queries respectively.

The next line contains n n n integers a 1 , … , a n a_1,\dots,a_n a1,,an ( 0 ≤ a i < 2 30 0 \le a_i < 2^{30} 0ai<230) — elements of the array.

Each of the next q q q lines contains two integers l l l and r r r ( 1 ≤ l < r ≤ n 1 \le l < r \le n 1l<rn) describing the query.

It is guaranteed that the sum of n n n over all testcases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

It is guaranteed that the sum of q q q over all testcases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each query, output “YES” if the subarray is interesting and “NO” otherwise.

You can output “Yes” and “No” in any case (for example, the strings “yES”, “yes”, and “Yes” will be recognized as correct answers).

Example

input
4
5 5
1 1 2 3 0
1 5
2 4
3 5
1 3
3 4
5 5
1 2 3 4 5
1 5
2 4
3 5
1 3
2 3
7 4
12 9 10 9 10 11 9
1 5
1 7
2 6
2 7
11 4
0 0 1 0 0 1 0 1 1 0 1
1 2
2 5
6 9
7 11
output
YES
YES
NO
NO
NO

YES
NO
NO
YES
NO

NO
NO
NO
NO

YES
NO
YES
YES

Note

Explanation for the first test case:

The first query is described in the statement.

In the second query, we should divide [ 1 , 2 , 3 ] [1,2,3] [1,2,3]. A possible division is [ 1 , 2 ] , [ 3 ] [1,2],[3] [1,2],[3], since 1 ⊕ 2 = 3 1\oplus 2=3 12=3.

It can be shown that for queries 3 , 4 , 5 3,4,5 3,4,5, the subarrays are not interesting.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, q;
int s[N];
map<int, vector<int>> p;

void solve() {
	cin >> n >> q;
	for (int i = 1; i <= n; i ++)
		cin >> s[i], s[i] ^= s[i - 1], p[s[i]].emplace_back(i);

	while (q -- ){
		int l, r;
		cin >> l >> r;

		if ((s[r] ^ s[l - 1]) == 0) {
			cout << "YES" << endl;
		} else {
			auto it = lower_bound(p[s[r]].begin(), p[s[r]].end(), l);
			if (it == p[s[r]].end()) {
				cout << "NO" << endl;
				continue;
			}
			int t1 = *it;
			auto it2 = upper_bound(p[s[l - 1]].begin(), p[s[l - 1]].end(), t1);
			if (it2 == p[s[l - 1]].end()) {
				cout << "NO" << endl;
				continue;
			}
			int t2 = *it2;
			if (t1 < r && t2 < r) cout << "YES" << endl;
			else cout << "NO" << endl;
		}
	}
	p.clear();
	cout << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

G1. Division + LCP (easy version)

Problem Statement

This is the easy version of the problem. In this version l = r l=r l=r.

You are given a string s s s. For a fixed k k k, consider a division of s s s into exactly k k k continuous substrings w 1 , … , w k w_1,\dots,w_k w1,,wk. Let f k f_k fk be the maximal possible L C P ( w 1 , … , w k ) LCP(w_1,\dots,w_k) LCP(w1,,wk) among all divisions.

L C P ( w 1 , … , w m ) LCP(w_1,\dots,w_m) LCP(w1,,wm) is the length of the Longest Common Prefix of the strings w 1 , … , w m w_1,\dots,w_m w1,,wm.

For example, if s = a b a b a b c a b s=abababcab s=abababcab and k = 4 k=4 k=4, a possible division is a b a b a b c a b \color{red}{ab}\color{blue}{ab}\color{orange}{abc}\color{green}{ab} abababcab. The L C P ( a b , a b , a b c , a b ) LCP(\color{red}{ab},\color{blue}{ab},\color{orange}{abc},\color{green}{ab}) LCP(ab,ab,abc,ab) is 2 2 2, since a b ab ab is the Longest Common Prefix of those four strings. Note that each substring consists of a continuous segment of characters and each character belongs to exactly one substring.

Your task is to find f l , f l + 1 , … , f r f_l,f_{l+1},\dots,f_r fl,fl+1,,fr. In this version l = r l=r l=r.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n, l l l, r r r ( 1 ≤ l = r ≤ n ≤ 2 ⋅ 1 0 5 1 \le l = r \le n \le 2 \cdot 10^5 1l=rn2105) — the length of the string and the given range.

The second line of each test case contains string s s s of length n n n, all characters are lowercase English letters.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2\cdot 10^5 2105.

Output

For each test case, output r − l + 1 r-l+1 rl+1 values: f l , … , f r f_l,\dots,f_r fl,,fr.

Example

input
7
3 3 3
aba
3 3 3
aaa
7 2 2
abacaba
9 4 4
abababcab
10 1 1
codeforces
9 3 3
abafababa
5 3 3
zpozp
output
0
1
3
2
10
2
0

Note

In the first sample n = k n=k n=k, so the only division of a b a aba aba is a b a \color{red}a\color{blue}b\color{orange}a aba. The answer is zero, because those strings do not have a common prefix.

In the second sample, the only division is a a a \color{red}a\color{blue}a\color{orange}a aaa. Their longest common prefix is one.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, k;
string s;
int ne[N];

int check(int x) {
	string p = " ";
	for (int i = 1; i <= x; i ++)
		p += s[i];
	for (int i = 1; i <= n; i ++)
		ne[i] = 0;
	for (int i = 2, j = 0; i <= x; i ++) {
		while (j && p[j + 1] != p[i]) j = ne[j];
		if (p[j + 1] == p[i]) j ++;
		ne[i] = j;
	}
	std::vector<PII> res;
	for (int i = 1, j = 0; i <= n; i ++) {
		while (j && s[i] != p[j + 1]) j = ne[j];
		if (s[i] == p[j + 1]) j ++;
		if (j == x) {
			res.emplace_back(i - x + 1, i);
			j = ne[j];
		}
	}
	sort(res.begin(), res.end(), [&](PII a, PII b) {
		return a.se < b.se;
	});
	int ans = 0, ed = 0;
	for (int i = 0; i < res.size(); i ++)
		if (res[i].fi > ed) {
			ans ++;
			ed = res[i].se;
		}
	return ans;
}

void solve() {
	cin >> n >> k >> k >> s;
	s = ' ' + s;

	int l = 0, r = n;
	while (l < r) {
		int mid = l + r + 1 >> 1;
		if (check(mid) >= k) l = mid;
		else r = mid - 1;
	}

	cout << l << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

G2. Division + LCP (hard version)

Problem Statement

This is the hard version of the problem. In this version l ≤ r l\le r lr.

You are given a string s s s. For a fixed k k k, consider a division of s s s into exactly k k k continuous substrings w 1 , … , w k w_1,\dots,w_k w1,,wk. Let f k f_k fk be the maximal possible L C P ( w 1 , … , w k ) LCP(w_1,\dots,w_k) LCP(w1,,wk) among all divisions.

L C P ( w 1 , … , w m ) LCP(w_1,\dots,w_m) LCP(w1,,wm) is the length of the Longest Common Prefix of the strings w 1 , … , w m w_1,\dots,w_m w1,,wm.

For example, if s = a b a b a b c a b s=abababcab s=abababcab and k = 4 k=4 k=4, a possible division is a b a b a b c a b \color{red}{ab}\color{blue}{ab}\color{orange}{abc}\color{green}{ab} abababcab. The L C P ( a b , a b , a b c , a b ) LCP(\color{red}{ab},\color{blue}{ab},\color{orange}{abc},\color{green}{ab}) LCP(ab,ab,abc,ab) is 2 2 2, since a b ab ab is the Longest Common Prefix of those four strings. Note that each substring consists of a continuous segment of characters and each character belongs to exactly one substring.

Your task is to find f l , f l + 1 , … , f r f_l,f_{l+1},\dots,f_r fl,fl+1,,fr.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n, l l l, r r r ( 1 ≤ l ≤ r ≤ n ≤ 2 ⋅ 1 0 5 1 \le l \le r \le n \le 2 \cdot 10^5 1lrn2105) — the length of the string and the given range.

The second line of each test case contains string s s s of length n n n, all characters are lowercase English letters.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2\cdot 10^5 2105.

Output

For each test case, output r − l + 1 r-l+1 rl+1 values: f l , … , f r f_l,\dots,f_r fl,,fr.

Example

input
7
3 1 3
aba
3 2 3
aaa
7 1 5
abacaba
9 1 6
abababcab
10 1 10
aaaaaaawac
9 1 9
abafababa
7 2 7
vvzvvvv
output
3 1 0
1 1
7 3 1 1 0
9 2 2 2 0 0
10 3 2 1 1 1 1 1 0 0
9 3 2 1 1 0 0 0 0
2 2 1 1 1 0

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, L, R;
string s;
int ne[N], f[N];

int check(int x) {
	if (f[x]) return f[x];
	string p = " ";
	for (int i = 1; i <= x; i ++)
		p += s[i];
	for (int i = 1; i <= n; i ++)
		ne[i] = 0;
	for (int i = 2, j = 0; i <= x; i ++) {
		while (j && p[j + 1] != p[i]) j = ne[j];
		if (p[j + 1] == p[i]) j ++;
		ne[i] = j;
	}
	int ans = 0, ed = 0;
	for (int i = 1, j = 0; i <= n; i ++) {
		while (j && s[i] != p[j + 1]) j = ne[j];
		if (s[i] == p[j + 1]) j ++;
		if (j == x) {
			if (i - x + 1 > ed) {
				ans ++;
				ed = i;
			}
			j = ne[j];
		}
	}
	// int ans = 0, ed = 0;
	// for (int i = 0; i < res.size(); i ++)
	// 	if (res[i].fi > ed) {
	// 		ans ++;
	// 		ed = res[i].se;
	// 	}
	return f[x] = ans;
}

void solve() {
	cin >> n >> L >> R >> s;
	for (int i = 1; i <= n; i ++) f[i] = 0;
	s = ' ' + s;

	int res = n;
	for (int i = L; i <= R; i ++) {
		int l = 0, r = res;
		while (l < r) {
			int mid = l + r + 1 >> 1;
			if (check(mid) >= i) l = mid;
			else r = mid - 1;
		}
		res = l;
		cout << res << " ";
	}
	cout << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

视频讲解

Codeforces Round 943 (Div. 3)(A ~ G2 讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/593043.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Webshell绕过技巧分析之-base64/HEX/Reverse/Html/Inflate/Rot13

在网络安全运营&#xff0c;护网HVV&#xff0c;重保等活动的过程中&#xff0c;webshell是一个无法绕过的话题。通常出现的webshell都不是以明文的形式出现&#xff0c;而是针对webshell关键的内容进行混淆&#xff0c;编码来绕过网络安全产品&#xff08;IDS&#xff0c;WAF&…

Linux USB转串口设备路径的查找方法

1、USB转串口设备 USB转串口设备是在嵌入式软件开发过程中经常要使用的&#xff0c;常常用于对接各种各样的串口设备。如果一台linux主机上使用多个usb转串口设备时&#xff0c;应用程序中就需要知道自己操作的是哪个串口设备。串口设备在系统上电时&#xff0c;由于驱动加载的…

短剧在线搜索表格-送模板

短剧在线搜索表格-附模板 介绍电脑界面手机界面送附加功能&#xff1a;反馈缺失短剧送&#xff1a;资源更新源头获取 介绍 你好&#xff01; 这是你第一次使用 金山在线文档 所生成的短剧搜索表格&#xff0c;支持批量导入自己转存的短剧名字和链接&#xff0c;实现在线搜索&a…

Kotlin基础知识总结(三万字超详细)

1、条件语句 &#xff08;1&#xff09;if条件 if条件表达式&#xff0c;每一个分支最后一条语句就是该分支的返回值。适用于每个分支返回值类型一致这种情况。 fun getDegree(score: Int): String{val result: String if(score 100){"非常优秀"}else if(score …

Docker使用进阶篇

文章目录 1 前言2 使用Docker安装常用镜像示例2.1 Docker安装RabbitMQ2.2 Docker安装Nacos2.3 Docker安装xxl-job&#xff08;推荐该方式构建&#xff09;2.4 Docker安装redis2.5 Docker安装mysql 1 前言 上一篇介绍了Docker的基础概念&#xff0c;带你 入门Docker&#xff0c…

菜鸡学习netty源码(四)—— EventLoopGroup

1.概述 我们前面进行过分析,channel为netty网络操作的抽象类,EventLoop负责处理注册到其上的Channel处理的I/O事件;EventLoopGroup是一个EventLoop的分组,它可以获取到一个或者多个的EventLoop对象。 2.类关系图 NioEventLoopGroup的类继承图,蓝色部分为对应的java类,绿…

当管道运算符遇上无限可能:探索数据流的奇妙之旅

文章目录 序言目的进程间通信的理解进程间通信的发展历史管道创建验证管道的大小管道的4种情况管道的5种特征 序言 通过该命令计算了在当前路径下一共有多少个文件夹的任务 进程虽然有独立性,但是进程并不孤僻,他们之间也会相互进行协作共同完成一件事 这个前提是他们之间的信…

Java如何获取当前日期和时间?

Java如何获取当前日期和时间&#xff1f; 本文将为您介绍 Java 中关于日期和时间获取的方法&#xff0c;以及介绍 Java 8 中获取日期和时间的全新API。 1、 System.currentTimeMillis() 获取标准时间可以使用 System.currentTimeMillis() 方法来获取&#xff0c;此方法优势是…

Flutter笔记:Widgets Easier组件库(12)使用消息吐丝(Notify Toasts)

Flutter笔记 Widgets Easier组件库&#xff08;12&#xff09;使用消息吐丝&#xff08;Notify Toasts&#xff09; - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 29114848416…

Linux(openEuler、CentOS8)基于chrony企业内网NTP服务器搭建实验

一、知识点 chrony 是由 守护进程 chronyd 以及 命令行工具 chronyc 组成的 chronyd 在后台静默运行并通过 123 端口与时间服务器定时同步时间&#xff0c;默认的配置文件是 /etc/chrony.conf chronyc 通过 323 端口与 chronyd 交互&#xff0c;可监控 chronyd 的性能并在运…

单例、工厂、策略、装饰器设计模式

1. 单例模式&#xff08;Singleton Pattern&#xff09;&#xff1a; 单例模式是一种常用的设计模式&#xff0c;用于确保一个类只有一个实例&#xff0c;并提供一个全局访问点。这种模式的特点是类自己负责保存其唯一的实例&#xff0c;并控制其实例化过程。单例模式广泛应用…

微服务----nacos配置及简单使用

目录 什么是nacos 项目在nacos上进行注册 注入nacos依赖 配置application.yml文件 nacos写入配置文件 首先&#xff0c;还是需要导入依赖 然后在nacos中编写配置文件 prod是我自定义的一个命名空间&#xff0c;在这里面进行配置文件编写~ 启动类上加上注解 编写Patt…

构建智能化监控追踪系统:架构设计与实践

随着信息技术的不断发展&#xff0c;监控追踪系统在各个领域的应用越来越广泛。本文将探讨监控追踪系统的架构设计&#xff0c;介绍其关键特点和最佳实践&#xff0c;助力各行业实现智能化监控与管理。 1. **需求分析与功能设计&#xff1a;** 在设计监控追踪系统之前&#xf…

Microsoft 365 for Mac(Office 365)v16.84正式激活版

office 365 for mac包括Word、Excel、PowerPoint、Outlook、OneNote、OneDrive和Teams的更新。Office提供了跨应用程序的功能&#xff0c;帮助用户在更短的时间内创建令人惊叹的内容&#xff0c;您可以在这里创作、沟通、协作并完成重要工作。 Microsoft 365 for Mac(Office 36…

HTML/CSS1

1.前置说明 请点这里 2.img元素 格式&#xff1a; <img src"图片地址" alt"占位文字" width"图片宽度" height"图片高度">其中alt是当图片加载失败时显示的文字 而且不同内核的浏览器显示出来的占位文字的效果也是不尽相同的…

K8S哲学 - 资源调度 HPA (horizontal pod autoScaler-sync-period)

kubectl exec&#xff1a; kubectl exec -it pod-name -c container-name -- /bin/sh kubectl run 通过一个 deployment来 演示 apiVersion: apps/v1 kind: Deployment metadata:name: deploylabels: app: deploy spec: replicas: 1selector: matchLabels:app: deploy-podt…

加州大学欧文分校英语中级语法专项课程04:Intermediate Grammar Project学习笔记(完结)

Intermediate Grammar Project Course Certificate Specialization Certificate Specialization Intro Course Intro 本文是学习 Coursera: Intermediate Grammar Project 这门课的学习笔记。 文章目录 Intermediate Grammar ProjectWeek 01: IntroductionCapstone Introducti…

解密中国首个“音乐版Sora” | 最新快讯

编辑部发自 AIGC 峰会 量子位公众号 QbitAI 文生图、文生音频、文生视频、AI 搜索引擎……大模型在多模态的进程可谓是愈演愈烈。 而聚焦在国内&#xff0c;有这么一家公司在 AIGC 大热潮的前后&#xff0c;单是“首个”就占了四席&#xff1a; 发布中国首个开源文本大模型国内…

基于OpenCv的图像全景拼接

⚠申明&#xff1a; 未经许可&#xff0c;禁止以任何形式转载&#xff0c;若要引用&#xff0c;请标注链接地址。 全文共计6757字&#xff0c;阅读大概需要3分钟 &#x1f308;更多学习内容&#xff0c; 欢迎&#x1f44f;关注&#x1f440;【文末】我的个人微信公众号&#xf…

【数据结构(十)】Map和Set

❣博主主页: 33的博客❣ ▶️文章专栏分类:数据结构◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你学更多数据结构知识 目录 1.前言2.搜索树2.1 概念2.2实现二叉搜索树 2.4性能分析3.搜索3.Map3.1Map说明3.2 M…