MATLAB中功率谱密度计算pwelch函数使用详解

MATLAB中功率谱密度计算pwelch函数使用详解

目录

前言

一、pwelch函数简介

二、pwelch函数参数说明

三、pxx = pwelch(x)示例

四、[pxx,f]=pwelch(x,window,noverlap,nfft,fs)示例

四、[pxx,f] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)示例

五、多通道功率谱估计

六、参考资料

总结


前言

        详细介绍MATLAB中功率谱密度计算pwelch函数的使用方法,介绍如何使用该函数及输入各个参数的含义,手把手用代码教你学习pwelch函数,文中附有代码,足够pwelch函数入门了。


提示:以下是本篇文章正文内容,希望能帮助到各位,转载请附上链接。

一、pwelch函数简介

         MATLAB中的pwelch函数是一种用于快速估计信号功率谱密度的工具,也可以计算信号的功率谱,通过阅读该函数使用说明会发现功率谱和功率谱密度是两个不同的概念,要注意一下,在很多教材上都称功率谱和功率谱密度是同一个概念,这是错的,不要被误导。

        pwelch函数可以只对一个信号进行功率谱密度估计,也可以同时对多个信号进行功率谱密度估计,简而言之,就是其输入信号那个参数可以是向量,也可以是矩阵。

二、pwelch函数参数说明

        函数说明文档里面pwelch函数调用的句话格式很多,我们不用关心那么多,关心如下几个格式和默认参数是怎么一回事就可以了。

pxx = pwelch(x)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs,freqrange)

[ pxx, f ] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)

x--------输入信号,指定为行向量或列向量,或矩阵。 如果 x 是矩阵,则其被视为独立通道

Window--------窗口,指定为行向量或列向量或整数。 如果 window 是一个向量,pwelch 将 x 划分为长度等于 window 长度的重叠段,然后将每个信号段与 window 中指定的向量相乘。 如果window是整数,则将pwelch分成长度等于整数值的段,并使用等长的汉明窗。 如果x的长度不能精确地划分为具有noverlap数量的重叠样本的整数段,则x被相应地截断。 如果将 window 指定为空,则使用默认的 Hamming 窗来获取 x 的 8 段,其中具有 noverlap 重叠样本。

noverlap----------重叠样本的数量,指定为小于窗口长度的正整数。 如果省略 noverlap 或 noverlap 指定为空,则使用一个值来获得段之间 50% 的重叠,即默认50%重叠

nfft--------DFT 点数,指定为正整数。 对于实值输入信号 x(PSD 估计值),如果 nfft 为偶数,则 pxx 的长度为 (nfft/2 + 1);如果 nfft 为奇数,则 pxx 的长度为 (nfft + 1)/2。 对于复值输入信号 x,PSD 估计的长度始终为 nfft。 如果 nfft 指定为空,则使用默认的 nfft。如果 nfft 大于Window长度,则数据用零填充。 如果 nfft 小于Window长度,则使用 datawrap包装该段,使长度等于nfft。建议两者相等。

fs-------采样频率,指定为正标量。 采样率是单位时间内的采样数。 如果时间单位是秒,那么采样率的单位是Hz。

freqrange--------------PSD 估计的频率范围,指定为“单边”、“双边”或“中心”之一。 对于实值信号,默认值为“单侧”;对于复值信号,默认值为“双侧”。 每个选项对应的频率范围为

        'oneside' — 返回实值输入信号 x 的单侧 PSD 估计。 如果 nfft 为偶数,则 pxx 的长度为 nfft/2 + 1, 如果 nfft 为奇数,则 pxx 的长度为 (nfft + 1)/2,间隔为 [0,π) rad/sample。 当 fs 可选指定时,对于偶数和奇数长度 nfft,相应的间隔分别为 [0,fs/2] 周期/单位时间和 [0,fs/2) 周期/单位时间。该函数将除 0 和奈奎斯特频率之外的所有频率的功率乘以 2,以保持总功率不变。

        'twoside' - 返回实值或复值输入 x 的两侧 PSD 估计值。 在这种情况下,pxx 的长度为 nfft,并在区间 [0,2π) rad/sample 上计算。 当指定fs时,间隔为[0,fs)周期/单位时间。

        'centered' - 返回实值或复值输入 x 的中心两侧 PSD 估计值。 在这种情况下,pxx 的长度为 nfft,并且在偶数长度 nfft 的间隔 (–π,π] rad/sample 和奇数长度 nfft 的 (–π,π) rad/sample 区间内计算。当 fs 可选地指定时,相应的对于偶数和奇数长度 nfft,间隔分别为 (–fs/2, fs/2] 周期/单位时间和 (–fs/2, fs/2) 周期/单位时间。

spectrumtype------------功率谱类型,指定为“psd”或“power”之一。 默认“psd”,将返回功率谱密度。 指定“power”可通过窗口的等效噪声带宽来缩放 PSD 的每个估计值。 使用“power”选项可以获得每个频率的功率估计值。

三、pxx = pwelch(x)示例

        创建一个角频率为π/4 rad的正弦波,外加N(0,1)白噪声。信号的长度是320个样本。得到其Welch PSD估计。

clc;
clear;
close all;

rng default

n = 0:319;
x = cos(pi/4*n)+randn(size(n));

pxx = pwelch(x);

可见,默认横轴是归一化的角频率,纵轴是取了10log10( )的dB功率谱密度。

关于归一化频率,参考:滤波器设计中的频率归一化问题_滤波器归一化频率-CSDN博客

解释如下:

        信号处理工具箱中经常使用的频率是Nyquist频率,它被定义为采样频率的一半,在滤波器的结束选择和设计当中的截止频率均使用Nyquist频率进行归一化处理。

   例如,对于一个采样频率为1000Hz的系统,300Hz的归一化即为300/500=0.6。归一化频率的范围在[0,1]之间。如果要将归一化频率转换为角频率,则将归一化频率乘以pi;如果将归一化频率转换成Hz,则将归一化频率乘以采样频率的一半。

        采样率的一半是最高频率,认为是1,那么真实频率和最高频率的比值就是归一化频率!也叫数字频率。
     将信号分成长度为nsc=⌊Nx/4.5⌋。这个动作相当于将信号分成尽可能长的段,以获得接近但不超过8个重叠50%的段。使用汉明窗口显示各部分。指定相邻部分之间50%的重叠

要计算FFT,使用max(256,2^p),其中p=[log2nsc⌉。

Nx = length(x);
nsc = floor(Nx/4.5);
nov = floor(nsc/2);
nff = max(256,2^nextpow2(nsc));

t = pwelch(x,hamming(nsc),nov,nff);

maxerr = max(abs(abs(t(:))-abs(pxx(:))))

默认分成8段,每段的长度为Nx/4.5=320/4.5=71.1111,舍去多余的数据,分段长度为71,并用同等长度的汉明窗;重叠长度为50%,则nov=floor(71/2)=35;DFT的点数取每段长度最接近的2的整数次幂和256的最大值,最接近的2的整数次幂是比每段长度长的最接近的2的整数次幂,所以DFT计算的时候如果DFT点数大于每段长度。会自动补0。

对于实值信号,默认值为“单侧”PSD,所以计算DFT点数为256,估计的PSD长度只有256/2+1=129点的长度。

四、[pxx,f]=pwelch(x,window,noverlap,nfft,fs)示例

        创建一个由100Hz正弦波和加性N(0,1)白噪声组成的信号。采样率为1khz,信号持续时间为5秒。使用500个样本和300个重叠样本的段长度,使用500个DFT点。

clc;
clear;
close all;

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));

[pxx,f] = pwelch(x,500,300,500,fs);

plot(f,10*log10(pxx))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

sum(abs(x).^2)/length(x) %信号功率
P = fs/2/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分

验证功率,对功率谱密度积分发现和信号功率几乎相等。

增大点数

clc;
clear;
close all;

rng default

fs = 10000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));

[pxx,f] = pwelch(x,5000,3000,5000,fs);

plot(f,10*log10(pxx))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

sum(abs(x).^2)/length(x) %信号功率
P = fs/2/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分

增大段长度,会发现功率谱估计的准,功率谱密度积分的值更接近信号的功率。

四、[pxx,f] = pwelch(x,window,noverlap,nfft,fs,freqrange,spectrumtype)示例

         创建一个由100Hz正弦波和加性N(0,1)白噪声组成的信号。采样率为1khz,信号持续时间为5秒。使用500个样本和300个重叠样本的段长度,使用500个DFT点。

clc;
clear;
close all;

rng default

fs = 1000;
t = 0:1/fs:10-1/fs;

x = cos(2*pi*100*t)+randn(size(t))+1;

[pxx,f] = pwelch(x,500,300,500,fs,'centered');

plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
E=sum(abs(x).^2)  %信号能量
P=sum(abs(x).^2)/length(x) %信号功率
P = fs/length(pxx) * (sum(pxx) - 0.5*(pxx(1) + pxx(end))) %梯形法积分�

[pxx,f] = pwelch(x,500,300,500,fs,'centered','power');
figure(2)
plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid

使用参数centered得到双边功率谱密度:

使用参数power得到双边功率谱(不是双边功率谱密度):

观察图可知,与信号设置的功率吻合。

取对数画出如下:

        可见,将功率谱密度积分和信号功率相等;观察功率谱图可知,每个频率对应的点显示了该频点的功率大小。

五、多通道功率谱估计

        在加性N(0,1)高斯白噪声中生成由三个正弦波组成的多通道信号的1024个样本。正弦波的频率分别为100、200、300Hz,采样频率为1000Hz。使用Welch的方法估计信号的PSD并绘制它。

clc;
clear;
close all;

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;
f = [100;200;300];
x = cos(2*pi*f*t)' + randn(length(t),3);

[pxx,f] = pwelch(x,500,300,500,fs);

plot(f,10*log10(pxx));

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

六、参考资料

Welch’s power spectral density estimate - MATLAB pwelch- MathWorks 中国

https://download.csdn.net/download/m0_66360845/89084990icon-default.png?t=N7T8https://download.csdn.net/download/m0_66360845/89084990


总结

        以上就是今天要讲的内容,本文仅仅简单介绍了功率谱密度(功率谱)绘制函数pwelch函数的使用,希望对各位小伙伴有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/592284.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

# cmd 报错 “npm 不是内部或外部命令,也不是可运行的程序 或批处理文件”

cmd 报错 “npm 不是内部或外部命令,也不是可运行的程序 或批处理文件” 1、报错原因分析: Node.js 没有安装或安装不正确。 npm 的路径没有添加到系统环境变量中。 安装 Node.js 时选择了不包含 npm 的安装选项。 2、解决方法: 1)在 cm…

【房屋】租房攻略,萌新第一次租房需要考虑的要素(通勤、地段、房源)

【房屋】租房攻略,萌新第一次租房需要考虑的要素(通勤、地段、房源) 文章目录 1、位置要好(通勤近 vs 地段好)2、户型要好(朝向/楼层,独卫/家具,水电费)3、价格要便宜4、…

Github 2024-05-03 Java开源项目日报 Top9

根据Github Trendings的统计,今日(2024-05-03统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目9Kotlin项目1C++项目1libGDX: 跨平台Java游戏开发框架 创建周期:4284 天开发语言:Java, C++协议类型:Apache License 2.0Star数量:2…

DDD:根据maven的脚手架archetype生成ddd多模块项目目录结构

随着领域驱动的兴起,很多人都想学习如何进行ddd的项目开发,那ddd的项目结构是怎么样的?又是如何结合SpringBoot呢?那么针对这个问题,笔者使用maven的archetype封装一个相对通用的ddd的项目目录,方便一键生成…

函数模板 template

函数模板的定义和调用 注意: 在调用函数模板时,编译器会根据调用的函数的参数类型自动推导出T的类型。 优先选择普通函数 强制调用函数模板 函数模板不能对函数的参数自动强制类型转换 myPrintAll(10,b)//普通函数,因为普通函数将b强制转换成…

安装vscode基础配置,es6基础语法,

https://code.visualstudio.com/ es6 定义变量 const声明常量(只读变量) // 1、声明之后不允许改变 const PI “3.1415926” PI 3 // TypeError: Assignment to constant variable. // 2、一但声明必须初始化,否则会报错 const MY_AGE /…

极简单行阅读器:上班族的摸鱼神器

在忙碌的工作日中,我们经常需要寻找一些方式来放松自己,而阅读无疑是一种既能够放松心情,又能增长知识的方式。今天,我要向大家介绍一个名为“极简单行阅读器”的神器,它不仅能够满足你的阅读需求,还能让你…

时也命也!反派失败于错估了主角的实力——早读(逆天打工人爬取热门微信文章解读)

此子断不可留 引言Python 代码第一篇 洞见 人到中年最大的清醒:时也,运也,命也第二篇 人民日报要闻社会政策 结尾 自知之明是最难得的知识 真正的智慧来自于对自己能力和局限的深刻理解 引言 最近在看仙葫 然后昨天晚上刷了一下这个诛仙 发现…

Qt之信号与槽

槽的本质:对信号响应的函数。 信号函数和槽函数通常位于某个类中,和普通的成员函数相⽐,它们的特别之处在于: 信号函数⽤ signals 关键字修饰,槽函数⽤ public slots、protected slots 或者 private slots 修饰。sign…

前端基础学习html-->表单标签

目录 表单标签: 表单域: 表单控件(表单元素): 提示信息: 表单标签: 表单标签顾名思义就是一种表格,用于收集用户信息 在html,一个完整的表单域是由表单域,表单控件(表单元素)和提示信息组…

揭秘Fabric交易流程:一文带你深入了解

随着区块链技术的日益普及,Hyperledger Fabric作为一种联盟链解决方案,受到了广泛关注。那么,Fabric的交易流程究竟是怎样的呢?本文将为您一一揭晓。 1. Fabric交易的参与方 客户端:交易流程的发起方,发起…

Java web第五次作业

1.在idea中配置好数据源 2、视频案例中只给出了查询所有结果的示例,请自己完成添加、删除、修改操作的代码。以下供参 考。 Delete("delete from emp where id#{id}") public void delete(Integer id); 测试代码 Test public void testDelete(){ empMa…

springboot 整合 knife4j-openapi3

适用于&#xff1a;项目已使用shiro安全认证框架&#xff0c;整合knife4j-openapi3 1.引入依赖 <!-- knife4j-openapi3 --> <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-openapi3-spring-boot-starter</artifa…

SpringBoot+Vue项目在线视频教育平台

一、前言介绍 本系统采用的数据库是Mysql&#xff0c;使用SpringBoot框架开发&#xff0c;运行环境使用Tomcat服务器&#xff0c;idea是本系统的开发平台。在设计过程中&#xff0c;充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面…

ThreeJS:常见几何体与基础材质入门

在前文《ThreeJS:Geometry与顶点|索引|面》中&#xff0c;我们了解了与Geometry几何体相关的基础概念&#xff0c;也尝试了如何通过BufferGeometry自定义几何体。 常见Geometry几何体 ThreeJS内部也提供了诸多封装好的几何体&#xff0c;常见的Geometry几何体如下图所示&#…

Delta lake with Java--利用spark sql操作数据1

今天要解决的问题是如何使用spark sql 建表&#xff0c;插入数据以及查询数据 1、建立一个类叫 DeltaLakeWithSparkSql1&#xff0c;具体代码如下&#xff0c;例子参考Delta Lake Up & Running第3章内容 import org.apache.spark.sql.SaveMode; import org.apache.spark.…

AGI要闻:斯坦福李飞飞首次创业,瞄准“空间智能”;OpenAI下周发布搜索产品挑战谷歌;新的开源 AI 眼镜来了|钛媒体AGI | 最新快讯

多方消息证实&#xff0c;OpenAI将会在北京时间5月10日&#xff08;周五&#xff09;凌晨2点公布搜索引擎新产品消息。 斯坦福大学首位红杉讲席教授 李飞飞 通用人工智能&#xff08;AGI&#xff09;领域又公布了一系列重磅消息。 5月4日凌晨&#xff0c;据路透社&#xff0c…

etcd源码流程---调试环境的搭建

etcd启动命令&#xff1a; name必须设置&#xff0c;否则会用default&#xff0c;集群内不同etcd实例的名字应该是唯一的&#xff0c;因为他会有一个map(name->ip)。如果initial-cluster-state设置为new&#xff0c;那么他会创建一个新的clusterid。需要在initial-cluster中…

算法课程笔记——蓝桥云课第六次直播

&#xff08;只有一个数&#xff0c;或者因子只有一个&#xff09;先自己打表&#xff0c;找找规律函数就是2的n次方 异或前缀和 相等就抵消 先前缀和再二分

离散数学之命题逻辑思维导图+大纲笔记(预习、期末复习,考研,)

大纲笔记&#xff1a; 命题逻辑的基本概念 命题与联结词 命题 命题是推理的基本单位 真命题&#xff0c;假命题 特征 陈述句 唯一的真值 是非真即假的陈述句 非命题 疑问句 祈使句 可真可假 悖论 模糊性 三个基本概念 复合命题 真值取决于原子命题的值和逻辑联结词 原子命题 逻…