USP技术提升大语言模型的零样本学习能力

大语言模型(LLMs)在零样本和少样本学习能力上取得了显著进展,这通常通过上下文学习(in-context learning, ICL)和提示(prompting)来实现。然而,零样本性能通常较弱,因为缺乏指导和难以应用现有的自动提示设计方法。论文提出了一种名为Universal Self-Adaptive Prompting(USP)的自动提示设计方法,旨在提升大语言模型(LLMs)在零样本学习(zero-shot learning)任务中的表现。USP通过使用少量未标记数据和仅推理的LLM生成伪示例(pseudo-demonstrations),从而在零样本设置中实现强大的性能提升。

自动提示设计方法是一种用于提高大语言模型(LLMs)在特定任务上性能的技术。这种方法特别适用于零样本(zero-shot)和少样本(few-shot)学习场景,其中模型需要在没有或只有很少的标注数据的情况下学习执行任务。自动提示设计通过生成或选择有效的提示(prompts),帮助模型更好地理解任务并生成适当的输出。

下面是USP方法的关键特点和步骤:

  1. 任务类型分类:USP首先将可能的自然语言处理(NLP)任务归类为三种类型之一:分类(CLS)、短文生成(SFG)和长文生成(LFG)。

  •  CLS (Classification):分类任务,涉及从有限的选项中选择正确答案。
  • SFG (Short-form Generation):短文生成任务,通常涉及问答或补全任务,其中正确答案可能有多个。
  • LFG (Long-form Generation):长文生成任务,如摘要生成,涉及生成较长的文本。
  1. 伪示例生成:在零样本设置中,USP使用未标记数据和推理-only的LLM生成伪示例。这些伪示例是从模型的输出中选择的,旨在模拟真实示例,帮助模型更好地学习任务。

  2. 自适应选择器:USP根据不同的任务类型使用相应的选择器来挑选最合适的查询和模型生成的响应作为伪示例。选择器通过评分函数来量化模型对每个候选伪示例的置信度。

  3. 两阶段过程

    • 第一阶段:LLM在零样本方式下被提示生成一组候选响应。
    • 第二阶段:将选定的伪示例作为上下文信息,与测试查询拼接,然后再次提示LLM以获得最终预测。
  4. 评分函数设计:USP为每种任务类型设计了不同的评分函数,以选择高质量的伪示例。例如:

    • 分类任务:使用负熵作为评分函数,以量化模型对分类标签的置信度。
    • 短文生成任务:使用归一化熵和多样性指标来评估模型生成的响应的置信度。
    • 长文生成任务:使用响应之间的平均成对ROUGE分数来衡量置信度。
  5. 成本分析:USP在计算上是高效的,因为它只需要少量的额外LLM查询。

除了USP,还有其它一些自动提示设计方法,如AutoCoT和Z-ICL,它们也使用模型生成的输出作为伪示例,但在选择过程和适用性方面存在差异。这些方法通常需要更多的LLM查询,并且可能需要对特定任务类型进行特定的设计。

在论文中,作者们设计了一系列实验来验证Universal Self-Adaptive Prompting (USP) 方法的有效性。这些实验在以下模型上进行:

  • PaLM-540B:一个具有540亿参数的大型语言模型。
  • PaLM-62B:一个具有62亿参数的大型语言模型。
  • PaLM 2-M:PaLM 2模型的一个变种,该模型在多语言和推理任务上具有更强的能力。

实验涉及的任务类型包括:

  • CLS (Classification)、SFG (Short-form Generation)、LFG (Long-form Generation)

在这些任务上,USP与以下几种基线方法进行了比较:

  • 标准零样本提示:传统零样本学习方法,没有使用任何示例。
  • AutoCoT:一种自动化的提示设计方法,使用聚类来选择伪示例。
  • 随机示例:随机选择示例的方法,作为USP方法的一种简化版本进行比较。
  • 标准少样本提示:使用少量标注数据进行学习的少样本学习方法。

实验结果表明,USP在多个任务上都取得了显著的性能提升。具体来说:

  • USP在生成任务(SFG和LFG)上的性能提升尤为显著,这可能是因为生成任务通常具有更大的行动空间,因此更依赖于示例提供的指导。
  • 更大或更先进的模型(如PaLM 2-M)中,USP的性能提升也更为明显,这表明模型的规模和训练技术的进步使得它们能够更好地利用高质量的示例进行学习。

此外,作者们还测试了USP的少样本变体(USPfs),这是在只有少量标注数据可用的情况下使用USP的一个变种。在PaLM 2-M模型上,USPfs在BBH (BIG-bench Hard) 任务上也展现了良好的性能。BBH任务是一组设计来挑战模型推理和逻辑能力的复杂任务。USPfs通过生成额外的伪示例来增强标注数据,从而在这些任务上取得了性能提升。

这些实验结果证明了USP方法在零样本和少样本学习场景下的有效性,特别是在处理复杂的NLP任务时,USP能够显著提高模型的性能。

论文链接:http://arxiv.org/pdf/2305.14926

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/592102.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

KMP算法--C语言实现

#include <stdio.h> #include <assert.h> #include <string.h> #include <stdlib.h>void GetNext(char* sub, int next[]) {int lenSub strlen(sub);next[0] -1; // 初始第一个为 -1 第二个为 0next[1] 0;int i 2;int k 0;while (i < lenSub){…

探究Android的多分辨率支持以及各种类型图标尺寸大小

术语和概念 屏幕尺寸 屏幕的物理尺寸&#xff0c;以屏幕的对角线长度作为依据&#xff08;比如 2.8寸&#xff0c; 3.5寸&#xff09;。 简而言之&#xff0c; Android把所有的屏幕尺寸简化为三大类&#xff1a;大&#xff0c;正常&#xff0c;和小。 程序可以针对这三种尺寸…

使用UmcFramework和unimrcpclient.xml连接多个SIP设置的配置指南及C代码示例

使用UmcFramework和unimrcpclient.xml连接多个SIP设置的配置指南及C代码示例 引言1. UniMRCP和UmcFramework简介2. 准备工作3. unimrcpclient.xml配置文件3.1 定义SIP设置3.2 定义MRCP会话配置文件 4. C代码示例5. 测试和验证6. 故障排查7. 结论8. 参考文献 引言 在多媒体通信…

Vue单页面应用和多页面应用的区别

概念&#xff1a; SPA单页面应用&#xff08;SinglePage Web Application&#xff09;&#xff0c;指只有一个主页面的应用&#xff0c;一开始只需要加载一次js、css等相关资源。所有内容都包含在主页面&#xff0c;对每一个功能模块组件化。单页应用跳转&#xff0c;就是切换…

STM32标准库编译流程

导入库函数 在ST官方固件库中找到STM32F10x_StdPeriph_Lib_V3.5.0.zip文件&#xff0c;解压&#xff0c;打开Libraries,接着打开STM32F10x_StdPeriph_Driver文件夹&#xff0c;继续点击src&#xff0c;看到库函数源文件&#xff1a; 将其复制到keil建立的工程的文件中&#xf…

JAVA系列 小白入门参考资料 接口

目录 接口 接口的概念 语法 接口使用 接口实现用例 接口特性 实现多个接口和实现用例 接口间的继承 接口 接口的概念 在现实生活中&#xff0c;接口的例子比比皆是&#xff0c;比如&#xff1a;笔记本上的 USB 口&#xff0c;电源插座等。 电脑的 USB 口上&am…

在视频中使用时间卷积和半监督训练进行三维人体姿态估计

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读&#xff1a;在视频中使用时间卷积和半监督训练进行三维人体姿态估计1、文献摘要2、提出方法2.1、时间扩张卷积模型2.2、半监督方法2.3、与传统…

【错题集-编程题】十字爆破(预处理 + 模拟)

牛客对于题目链接&#xff1a;十字爆破 (nowcoder.com) 一、分析题目 暴力模拟会超时。 预处理&#xff0c;先把每一行以及每一列的和存起来。 模拟即可&#xff0c;但是由于数据量过⼤&#xff0c;我们可以提前把每⼀⾏以及每⼀列的和存起来&#xff0c;⽅便统计总和。 二、代…

应用分层和企业规范

目录 一、应用分层 1、介绍 &#xff08;1&#xff09;为什么需要应用分层&#xff1f; &#xff08;2&#xff09;如何分层&#xff1f;&#xff08;三层架构&#xff09; MVC 和 三层架构的区别和联系 高内聚&#xff1a; 低耦合&#xff1a; 2、代码重构 controlle…

Sqlserver批量迁移Job

因为切换物理机&#xff0c;需要把数据库的作业从A机器迁移到B机器&#xff0c;数据库整体备份还原就可以了&#xff0c;数据库上的作业不会跟着带过去&#xff0c;需要手动创建&#xff0c;作业数量太多&#xff0c;逐一创建太浪费时间&#xff0c;Microsoft SQL Server Manag…

SpringBoot+Vue项目企业客户管理系统

一、前言介绍 本文主要论述了如何使用JAVA语言开发一个企业客户管理系统&#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述企业客户管理系统的当前背景以及系统开…

扩展学习|国内外用户画像相关进展一览

文献来源&#xff1a;徐芳,应洁茹.国内外用户画像研究综述[J].图书馆学研究,2020(12):7-16.DOI:10.15941/j.cnki.issn1001-0424.2020.12.002. 一、用户画像的概念 用户画像概念一经提出,便被广泛应用到精准营销等领域。后来,作为一种描绘用户特征、表达用户诉求的有效工具,用户…

karpathy Let‘s build GPT

1 introduction 按照karpathy的教程&#xff0c;一步步的完成transformer的构建&#xff0c;并在这个过程中&#xff0c;加深对transformer设计的理解。 karpathy推荐在进行网络设计的过程中&#xff0c;同时利用jupyter notebook进行快速测试和python进行主要的网络的构建。 …

前端页面平滑过渡解决方案

一、问题产生 在使用图片作为页面背景时&#xff0c;无法使用transtion进行平滑过渡&#xff0c;直接切换背景又会降低使用体验。 二、解决方式 使用clip-path对背景图片裁剪配合transtion实现平滑过渡的效果 三、效果展示 网址&#xff1a;ljynet.com 四、实现方式 tem…

图像特征点检测

⚠申明&#xff1a; 未经许可&#xff0c;禁止以任何形式转载&#xff0c;若要引用&#xff0c;请标注链接地址。 全文共计3077字&#xff0c;阅读大概需要3分钟 &#x1f308;更多学习内容&#xff0c; 欢迎&#x1f44f;关注&#x1f440;【文末】我的个人微信公众号&#xf…

练习题(2024/5/3)

1对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提示&#xff1a; 树中…

前端工程化04-VsCode插件设置总结(持续更)

1、输出语句log设置 log输出、平常你输出log,还必须得打一个console然后再.log()非常不方便&#xff0c;当然我们可以直接输入一个log,但是提示有两个&#xff0c;我们还得上下选择 所以我们直接采用插件的提示 一个clg就可以了 2、括号包裹提示 找到VsCode的settings.js文…

考研入门55问---基础知识篇

考研入门55问---基础知识篇 01 &#xff1e;什么是研究生入学考试&#xff1f; 研究生是指大专和本科之后的深造课程。以研究生为最高学历, 研究生毕业后&#xff0c;也可称研究生&#xff0c;含义为研究生学历的人。在中国大陆地区&#xff0c;普通民众一般也将硕士毕业生称…

微图乐 多种装B截图一键制作工具(仅供娱乐交流)

软件介绍 采用exe进程交互通信。全新UI界面&#xff0c;让界面更加清爽简约。支持zfb、VX、TX、Yin行、Dai款、游戏等图片生成&#xff0c;一键超清原图复制到剪辑板&#xff0c;分享给好友。适用于提高商家信誉度&#xff0c;产品销售额度。装逼娱乐&#xff0c;用微图乐。图…

InfiniFlow 創始人兼CEO張穎峰確認出席“邊緣智能2024 - AI開發者峰會”

隨著AI技術的迅猛發展&#xff0c;全球正逐步進入邊緣計算智能化與分布式AI深度融合的新時代&#xff0c;共同書寫著分布式智能創新應用的壯麗篇章。邊緣智能&#xff0c;作為融合邊緣計算和智能技術的新興領域&#xff0c;正逐漸成為推動AI發展的關鍵力量。借助分布式和去中心…