常微分方程建模R包ecode(二)——绘制相速矢量场

本节中我们考虑一个更为复杂的常微分方程模型,
d X C d t = ν ( X A + Y A ) − β ⋅ X C ⋅ ( Y C + Y A ) − ( μ + g ) ⋅ X C , ( 1 ) d Y C d t = β ⋅ X C ⋅ ( Y C + Y A ) − ( μ + g + ρ ) ⋅ Y C , ( 2 ) d X A d t = g ⋅ X C − β ⋅ X A ⋅ ( Y C + Y A ) , ( 3 ) d Y A d t = β ⋅ X A ∗ ( Y C + Y A ) + g ∗ Y C − ρ ∗ Y A ( 4 ) \frac{dX_C}{dt} = \nu (X_A + Y_A) - \beta · X_C · (Y_C + Y_A) - (\mu + g) · X_C, \quad(1) \\ \frac{dY_C}{dt} = \beta · X_C · (Y_C + Y_A) - (\mu + g + \rho) · Y_C, \quad(2)\\ \frac{dX_A}{dt} = g · X_C - \beta · X_A · (Y_C + Y_A), \quad (3) \\ \frac{dY_A}{dt} = \beta · X_A * (Y_C + Y_A) + g * Y_C - \rho * Y_A \quad(4) dtdXC=ν(XA+YA)βXC(YC+YA)(μ+g)XC,(1)dtdYC=βXC(YC+YA)(μ+g+ρ)YC,(2)dtdXA=gXCβXA(YC+YA),(3)dtdYA=βXA(YC+YA)+gYCρYA(4)
该常微分方程系统用于模拟一种树木传染病动态,其中 X C X_C XC代表易感树苗(susceptible sapling)的个体数, Y C Y_C YC代表感病树苗(infected sapling)的个体数, X A X_A XA代表易感成年树木的个体数(susceptible adult), Y A Y_A YA代表感病成年树木(infected adult)的个体数。显然 X C , Y C , X A , Y A ≥ 0 X_C,Y_C,X_A,Y_A≥0 XC,YC,XA,YA0

( 1 ) (1) (1)式中, ν ( X A + Y A ) \nu (X_A + Y_A) ν(XA+YA)代表繁殖产生新树苗的速率,其中 ν \nu ν是繁殖速率。 − β ⋅ X C ⋅ ( Y C + Y A ) -\beta · X_C · (Y_C + Y_A) βXC(YC+YA)指的是由于疾病传染,导致易感树苗转化为感病树苗的速率,其中 β \beta β为传染率。 − ( μ + g ) ⋅ X C , - (\mu + g) · X_C, (μ+g)XC,是指由于自然死亡及树木成长,导致易感树苗被移除,或是进入到易感成年树木的速率,其中 μ \mu μ为自然死亡率, g g g为树木生长率。

( 2 ) (2) (2)式中, β ⋅ X C ⋅ ( Y C + Y A ) \beta · X_C · (Y_C + Y_A) βXC(YC+YA)代表由易感树苗被传染而转化为感病树苗的速率, − ( μ + g + ρ ) ⋅ Y C - (\mu + g + \rho) · Y_C (μ+g+ρ)YC则包含自然死亡、树木成长、因疾病感染而死亡这三个过程,其中 ρ \rho ρ代表由于传染病而导致的死亡率。

( 3 ) (3) (3)式中, g ⋅ X C g · X_C gXC代表由于树木生长而使易感树苗转换为易感成年树木的速率, − β ⋅ X A ⋅ ( Y C + Y A ) - \beta · X_A · (Y_C + Y_A) βXA(YC+YA)代表由于疾病传染,使易感成年大树转换为感病成年大树的速率。

( 4 ) (4) (4)式中, β ⋅ X A ∗ ( Y C + Y A ) \beta · X_A * (Y_C + Y_A) βXA(YC+YA)对应于疾病传染过程, g ∗ Y C g * Y_C gYC对应于树木生长过程, − ρ ∗ Y A -\rho * Y_A ρYA对应于疾病导致的死亡过程。

研究一个常微分方程系统,最为直接的方法是研究其相速矢量场(phase velocity vector filed)。下面我们回顾一下与相速矢量场相关的几个重要概念,

常微分方程中的几个重要概念
相空间(phase space):是指所有模型变量的所有可能取值的组合构成的空间。在本节案例中,相空间为 { ( X C , Y C , X A , Y A ) ∣ X C , Y C , X A , Y A ≥ 0 } \{(X_C,Y_C,X_A,Y_A)| X_C,Y_C,X_A,Y_A≥0\} {(XC,YC,XA,YA)XC,YC,XA,YA0}
相点(phase point):相空间中的任意一个点称为相点。相点用于描述系统的状态。在本节案例中,相点 ( X C , Y C , X A , Y A ) = ( 10 , 60 , 20 , 100 ) (X_C,Y_C,X_A,Y_A)=(10,60,20,100) (XC,YC,XA,YA)=(10,60,20,100)代表系统中有10棵易感树苗、60棵感病树苗、20棵易感成树、100棵感病成树。
相速矢量(phase velocity vector):系统位于某一相点时,其速度大小和方向构成的矢量,叫做该相点所对应的相速矢量。在本节案例中,针对相点 ( X C , Y C , X A , Y A ) = ( 10 , 60 , 20 , 100 ) (X_C,Y_C,X_A,Y_A)=(10,60,20,100) (XC,YC,XA,YA)=(10,60,20,100),将 X C , Y C , X A , Y A X_C,Y_C,X_A,Y_A XC,YC,XA,YA的值代入式 ( 1 − 4 ) (1-4) (14),求出 ( d X C d t , d Y C d t , d X A d t , d Y A d t ) (\frac{dX_C}{dt}, \frac{dY_C}{dt} , \frac{dX_A}{dt} , \frac{dY_A}{dt}) (dtdXC,dtdYC,dtdXA,dtdYA),其值便是该相点所对应的相速矢量。相速矢量描述了系统位于某一相点时的运动方向和快慢。
相速矢量场(phase velocity vector field):相空间中所有相速矢量组成的集合。
相位曲线(phase curve):相点沿相速矢量场移动所形成的运动轨迹。

ecode包中,当函数plot作用于eode类的对象时,plot函数会自动绘制出某个常微分方程系统的相速矢量场,或相速矢量。在上一节中,我们介绍了当常微分方程系统中含有两个模型变量时,plot函数的用法。

本节所关注的模型含有四个模型变量 X C , Y C , X A , Y A X_C,Y_C,X_A,Y_A XC,YC,XA,YA,因而将介绍含有多个模型变量时,plot函数的行为。

一、绘制相速矢量场

首先我们在ecode包中构建上述模型(式 ( 1 − 4 ) (1-4) (14)):

library(ecode)

dX_Cdt <- function(X_C, Y_C, X_A, Y_A, nu = 0.15, beta = 0.1, mu = 0.15, g = 0.04)
  nu * (X_A + Y_A) - beta * X_C * (Y_C + Y_A) - (mu + g) * X_C

dY_Cdt <- function(X_C, Y_C, Y_A, beta = 0.1, mu = 0.15, g = 0.04, rho = 0.2)
  beta * X_C * (Y_C + Y_A) - (mu + g + rho) * Y_C

dX_Adt <- function(X_C, Y_C, X_A, Y_A, beta = 0.1, g = 0.04)
  g * X_C - beta * X_A * (Y_C + Y_A)

dY_Adt <- function(X_A, Y_C, Y_A, beta = 0.1, g = 0.04, rho = 0.2)
  beta * X_A * (Y_C + Y_A) + g * Y_C - rho * Y_A

x <- eode(dX_Cdt = dX_Cdt, dY_Cdt = dY_Cdt, dX_Adt = dX_Adt, dY_Adt = dY_Adt)
x
### An ODE system: 4 equations
### equations:
###   dX_Cdt = nu * (X_A + Y_A) - beta * X_C * (Y_C + Y_A) - (mu + g) * X_C 
###   dY_Cdt = beta * X_C * (Y_C + Y_A) - (mu + g + rho) * Y_C 
###   dX_Adt = g * X_C - beta * X_A * (Y_C + Y_A) 
###   dY_Adt = beta * X_A * (Y_C + Y_A) + g * Y_C - rho * Y_A 
### variables: X_C Y_C X_A Y_A 
### parameters: nu = 0.15, beta = 0.1, mu = 0.15, g = 0.04, rho = 0.2 
### constraints: X_A<1000 X_A>0 X_C<1000 X_C>0 Y_A<1000 Y_A>0 Y_C<1000 Y_C>0

由于我们没有在模型中指定模型变量的范围,ecode包自动将变量范围设置在 ( 0 , 1000 ) (0,1000) (0,1000)内。此时调用plot函数,

plot(x)
### Set X_A = 500, Y_A = 500 for mapping in two axis

在这里插入图片描述
输出结果如图所示。plot函数自动限制了 X A = 500 , Y A = 500 X_A = 500, Y_A = 500 XA=500,YA=500,并以 X C , Y C X_C, Y_C XC,YC为横、纵坐标系绘制相速矢量场。需要注意的是,该相速矢量图仅仅表示 X A , Y A X_A,Y_A XA,YA为固定值时的相速矢量场,该矢量场位于相空间内部的一个平面。

当常微分方程组含有多个模型变量时,如果不给plot任何参数,则plot函数默认会以常微分方程中前两个变量为坐标轴绘制相速矢量场,而其余变量将会被赋上一个固定值,其值等于该模型变量范围的中值。

二、自定义模型变量的值

如果不希望以 X A = 500 , Y A = 500 X_A = 500, Y_A = 500 XA=500,YA=500为限制条件,则可以在plot函数中添加set_covar参数,

plot(x, set_covar = list(X_A = 10, Y_A = 20))

在这里插入图片描述此时,plot函数给出的是 X A = 10 , Y A = 20 X_A=10, Y_A=20 XA=10,YA=20株时,以 X C , Y C X_C,Y_C XC,YC为坐标轴作出的相速矢量场。

如果想要固定 X C , Y C X_C, Y_C XC,YC,以 X A , Y A X_A, Y_A XA,YA为坐标轴作相速矢量场,则

plot(x, set_covar = list(X_C = 10, Y_C = 20))

在这里插入图片描述
此为 X C = 10 , Y C = 20 X_C=10, Y_C=20 XC=10,YC=20时,以 X A , Y A X_A, Y_A XA,YA为坐标轴的相速矢量场。

三、自定义模型变量的范围

上一节中已经提到,可以采用eode_set_constraint重新设置模型变量的范围。例如,以下代码将 X C , Y C , X A , Y A X_C, Y_C, X_A, Y_A XC,YC,XA,YA的范围位置为 ( 0 , 5 ) (0,5) (0,5)

x <- eode_set_constraint(x, new_constraint = c("X_C<5","Y_C<5","X_A<5","Y_A<5"))
x
### An ODE system: 4 equations
### equations:
###   dX_Cdt = nu * (X_A + Y_A) - beta * X_C * (Y_C + Y_A) - (mu + g) * X_C 
###   dY_Cdt = beta * X_C * (Y_C + Y_A) - (mu + g + rho) * Y_C 
###   dX_Adt = g * X_C - beta * X_A * (Y_C + Y_A) 
###   dY_Adt = beta * X_A * (Y_C + Y_A) + g * Y_C - rho * Y_A 
### variables: X_C Y_C X_A Y_A 
### parameters: nu = 0.15, beta = 0.1, mu = 0.15, g = 0.04, rho = 0.2 
### constraints: X_A<5 X_A>0 X_C<5 X_C>0 Y_A<5 Y_A>0 Y_C<5 Y_C>0

接下来,我们尝试固定 X A = 2 , Y A = 2 X_A = 2, Y_A = 2 XA=2,YA=2,以 X C , Y C X_C, Y_C XC,YC为坐标轴,绘制相速矢量场,

plot(x, set_covar = list(X_A = 2, Y_A = 2))

在这里插入图片描述
可以看到,该常微分方程组似乎在 X C , Y C X_C, Y_C XC,YC的值很小时存在使 d X C / d t , d Y C / d t = 0 dX_C/dt, dY_C/dt=0 dXC/dt,dYC/dt=0的点。

四、一维相速矢量场

如果一个常微分方程只有一个模型变量,或者在含有 n n n个模型变量的常微分方程组中,有 ( n − 1 ) (n-1) (n1)个变量的值都被固定了,那么plot函数就会绘制一维的相速矢量场。

现在我们尝试固定 X A = 2 , Y A = 2 , X C = 2 X_A = 2, Y_A = 2, X_C = 2 XA=2,YA=2,XC=2。这样,只剩下模型变量 X A X_A XA的值没有被固定。plot函数将以 X A X_A XA为唯一的坐标轴,绘制一维的相速矢量场,

plot(x, set_covar = list(X_A = 2, Y_A = 2, X_C = 2))

在这里插入图片描述
其中,每个相速矢量的值代表的是 d Y C / d t dY_C/dt dYC/dt在某一相点的对应值。

五、相速矢量

当所有模型变量都被赋值时,plot函数将会作出某一相点所对应的相速矢量。在相空间中,相速矢量的起点在其对应的相点,长度代表相点在相点在该处运动的速率。例如,在本节案例中,位于相点 ( X C 0 , Y C 0 , X A 0 , Y A 0 ) (X_{C0},Y_{C0},X_{A0},Y_{A0}) (XC0,YC0,XA0,YA0)的相速矢量的值为,
( d X C / d t , d Y A / d t , d X A / d t , d Y A / d t ) ∣ X C = X C 0 , Y C = Y C 0 , X A = X A 0 , Y A = Y A 0 (dX_C/dt,dY_A/dt,dX_A/dt,dY_A/dt)|_{X_{C}=X_{C0}, Y_{C}=Y_{C0}, X_{A}=X_{A0}, Y_{A}=Y_{A0}} (dXC/dt,dYA/dt,dXA/dt,dYA/dt)XC=XC0,YC=YC0,XA=XA0,YA=YA0
调用plot时,plot函数会画出相速矢量在各个维度上的值,

plot(x, set_covar = list(X_A = 2, Y_A = 2, X_C = 2, Y_C = 2))

在这里插入图片描述
该图给出了相点 ( 2 , 2 , 2 , 2 ) (2,2,2,2) (2,2,2,2)所对应的相速矢量,其中横坐标的每一个标签代表相速矢量在某一维度上的分解值,即 d X C / d t ∣ X C = 2 , d Y C / d t ∣ Y C = 2 , d X A / d t ∣ X A = 2 , d Y A / d t ∣ Y A = 2 dX_C/dt|_{X_C=2}, dY_C/dt|_{Y_C=2}, dX_A/dt|_{X_A=2}, dY_A/dt|_{Y_A=2} dXC/dtXC=2,dYC/dtYC=2,dXA/dtXA=2,dYA/dtYA=2

如何引用

Wu, H. (2023). ecode: An R package to investigate community dynamics in ordinary differential equation systems. bioRxiv, 2023-06.

原文见bioRxiv。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/59200.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Tcp的粘包和半包问题及解决方案

目录 粘包&#xff1a; 半包&#xff1a; 应用进程如何解读字节流&#xff1f;如何解决粘包和半包问题&#xff1f; ①&#xff1a;固定长度 ②&#xff1a;分隔符 ③&#xff1a;固定长度字段存储内容的长度信息 粘包&#xff1a; 一次接收到多个消息&#xff0c;粘包 应…

利用XSS在线平台获取用户cookie

//XSS弹窗&#xff1a; <script>alert("xss")</script> XSS漏洞&#xff1a; //XSS弹窗&#xff1a; <script>alert("xss")</script> //XSS在线平台&#xff1a; <ScRipT sRc//7ix7kigpovxdbtd32fuspgffmtmufo3wwzgnzaltddewtb…

推荐前端开发者提升效率的工具

是否掌握新的技术很大程度决定着你是否被淘汰。 虽然应用程序试图将网站替代&#xff0c;但前端 Web 开发业务仍在快速变化和增长&#xff0c;前端开发人员的功能并没有消失。以下介绍一款前端开发者提升效率的工具。 目录 一、低代码工具前景 二、如何理解低代码工具 三、前端…

【word技巧】如何做到,批量保存word文档图片

Word文件中有很多图片都需要保存&#xff0c;除了一张张的进行图片另存为以外&#xff0c;我们还有其他方法可以批量一次性保存word文档中的图片嘛&#xff1f;今天分享两个方法&#xff0c;批量保存word文档图片。 方法一&#xff1a; 将文件进行另存为&#xff0c;在选择路…

C++ 用指针处理数组元素

指针加减运算的特点使得指针特别合适于处理存储在一段连续内存空间中的同类数据。而数组恰好是具有一定顺序关系的若干同类型变量的集合体&#xff0c;数组元素的存储在物理上也是连续的&#xff0c;数组名就是数组存储的首地址。这样&#xff0c;便可以使用指针来对数组及其元…

Spring Boot 日志

Spring Boot 日志 ​ 在 Spring Boot 里面是有一个内置了的日志框架的&#xff0c;所以才能运行的时候在控制台打印出来。默认情况下的日志是系统定义和打印的&#xff0c;但我们也可以自行自定义打印日志。 日志的好处&#xff1a; 1、发现问题和定位问题&#xff1b;☆&am…

物联网工程开发实施,应该怎么做?

我这里刚好有嵌入式、单片机、plc的资料需要可以私我或在评论区扣个6 物联网工程的概念 物联网工程是研究物联网系统的规划、设计、实施、管理与维护的工程科学&#xff0c;要求物联网工程技术人员根 据既定的目标&#xff0c;依照国家、行业或企业规范&#xff0c;制定物联网…

NVIDIA 535.86.05 Linux 图形驱动程序改进 Wayland 支持

NVIDIA公司近日发布了适用于 Linux、FreeBSD 和 Solaris 系统的 NVIDIA 535.86.05 图形驱动程序&#xff0c;作为其生产分支的维护更新&#xff0c;解决了各种错误和问题。 NVIDIA 535.86.05 是在 NVIDIA 535.54.03 发布一个多月之后发布的&#xff0c;它通过解决在使用某些 W…

C高级--day3(shell中的输入、命令置换符、数组、算数运算、分支结构)

#!/bin/bash pls ~/ -l | grep "^-" | wc -l qls ~/ -l | grep "^d" | wc -l echo "普通文件个数&#xff1a;$p" echo "目录文件个数&#xff1a;$q"#!/bin/bash read file posexpr index $file \. strexpr substr $file $((pos1)) 2…

Meta AI研究团队新AI模型: Llama 2 大语言模型

Llama是Facebook Research团队开发的基础语言模型集&#xff0c;旨在提供广泛的语言理解能力。它基于转换器架构&#xff0c;参数范围从7B到65B。通过使用Llama模型&#xff0c;研究人员和开发人员可以构建更先进的自然语言处理系统。您可以在GitHub上找到相关的代码和资源&…

SpringBoot复习:(15)Spring容器的核心方法refresh是在哪里被调用的?

在SpringApplication的run方法&#xff1a; refreshContext代码如下&#xff1a; 其中调用的refresh方法代码如下&#xff1a; 其中调用的refresh方法代码如下&#xff1a; 其中调用的fresh方法代码如下&#xff1a; 其中调用了super.refresh();而这个super.refresh()就是…

数据结构 | 基本数据结构——队列

目录 一、何谓队列 二、队列抽象数据类型 三、用Python实现队列 四、模拟&#xff1a;传土豆 五、模拟&#xff1a;打印任务 5.1 主要模拟步骤 5.2 Python实现 一、何谓队列 队列是有序集合&#xff0c;添加操作发生在“尾部”&#xff0c;移除操作则发生在“头部”。新…

idea如何加快创建Maven项目的速度

一、下载archetype-catalog.xml 下载archetype-catalog.xml的地址 二、配置 以下所说的配置都指全局配置。 配置Maven -DarchetypeCataloglocal -Dfile.encodinggbk

靶形数独

题目描述 小城和小华都是热爱数学的好学生&#xff0c;最近&#xff0c;他们不约而同地迷上了数独游戏&#xff0c;好胜的他们想用数独来一比高低。但普通的数独对他们来说都过于简单了&#xff0c;于是他们向 Z 博士请教&#xff0c;Z 博士拿出了他最近发明的“靶形数独”&am…

Portraiture 4.0.3 for windows/Mac简体中文版(ps人像磨皮滤镜插件)

Imagenomic Portraiture系列插件作为PS磨皮美白必备插件&#xff0c;可以说是最强&#xff0c;今天它更新到了4.0.3版本。但是全网都没有汉化包&#xff0c;经过几个日夜汉化&#xff0c;终于汉化完成可能是全网首个Portraiture 4的汉化包&#xff0c;请大家体验&#xff0c;有…

Python实现(条形码,二维码)生成识别

Python实现&#xff08;二维码&#xff0c;条形码&#xff09;生成识别 生成条形码生成二维码识别条形码二维码 生成条形码 安装barcode模块: $ pip install python-barcode barcode文档 import barcode from barcode.writer import ImageWriter # 更多了解&#xff1a;https…

验证码安全志:AIGC+集成环境信息信息检测

目录 知己知彼&#xff0c;黑灰产破解验证码的过程 AIGC加持&#xff0c;防范黑灰产的破解 魔高一丈&#xff0c;黑灰产AIGC突破常规验证码 双重防护&#xff0c;保障验证码安全 黑灰产经常采用批量撞库方式登录用户账号&#xff0c;然后进行违法违规操作。 黑灰产将各种方…

HTML,url,unicode编码

目录标题 HTML实体编码urlcode编码unicode编码小结基础例题高级例题 HTML实体编码 实体表示&#xff1a; 以&符号开始&#xff0c;后面跟着一个预定义的实体的名称&#xff0c;或是一个#符号以及字符的十进制数字。 例&#xff1a; <p>hello</p> <!-- 等同…

2、Tomcat介绍(下)

组件分类 在Apache Tomcat中&#xff0c;有几个顶级组件&#xff0c;它们是Tomcat的核心组件&#xff0c;负责整个服务器的运行和管理。这些顶级组件包括&#xff1a; Server(服务器)&#xff1a;Tomcat的server.xml配置文件中的<Server>元素代表整个Tomcat服务器实例。每…

Android 10 解决摄像头预览与实际方向不符问题

问题&#xff1a; 在Android 10中&#xff0c;旋转屏幕方向后&#xff0c;摄像头采集画面的方向&#xff0c;和我们预览的方向是不一致的&#xff0c;该怎么去解决&#xff1f; 当我们旋转屏幕默认为竖屏的时候&#xff0c;进行摄像头旋转采集的数据一般是横向的&#xff0c;而…