kubectl_入门_service详解

Service

我们知道 Pod 的生命周期是有限的。可以用 ReplicaSet 和Deployment 来动态的创建和销毁 Pod,每个 Pod 都有自己的 IP 地址,但是如果 Pod 重建了的话那么他的 IP 很有可能也就变化了。

这就会带来一个问题:比如我们有一些后端的 Pod 集合为集群中的其他应用提供 API 服务,如果我们在前端应用中把所有的这些后端的 Pod 的地址都写死,然后以某种方式去访问其中一个 Pod 的服务,这样看上去是可以工作的,但是如果这个 Pod 挂掉了,然后重新启动起来了,是不是 IP 地址非常有可能就变了,这个时候前端就极大可能访问不到后端的服务了。

为解决这个问题 Kubernetes 就为我们提供Service对象,Service 是一种抽象的对象,它定义了一组 Pod 的逻辑集合和一个用于访问它们的策略,其实这个概念和微服务非常类似。一个 Serivce 下面包含的 Pod 集合是由 Label Selector 来决定的。

在这里插入图片描述

1. kube-proxy

service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个node节点上都运行一个kube-proxy服务进程,当创建service的时候会通过api-server向etcd写入创建的service信息,而kube-proxy会基于监听的机制发现这种service的变动,然后它会将最新的service信息转换成对应的访问规则

在这里插入图片描述

kube-proxy目前支持三种工作模式:

  • userspace模式
  • iptables模式
  • ipvs模式

1.1 userspace模式

userspace模式下,kube-proxy为service后端的每个service创建一个监听端口,发向cluster ip的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的pod并和其建立连接,以将请求转发到pod上。

该模式下,kube-proxy充当了一个四层负载均衡器的角色,由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。

在这里插入图片描述

1.2 iptables模式

iptables模式下,kube-proxy为service后端的每个pod创建对应的iptables规则,直接将发向cluster ip的请求重定向到一个pod ip。

该模式下kube-proxy不承担四层负载均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端pod不可用时也无法进行重试

在这里插入图片描述

1.3 ipvs模式

ipvs模式和iptables类似,kube-proxy监控pod的变化并创建相应的ipvs规则,ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。

在这里插入图片描述

此模式必须安装ipvs内核模块,否则会降级为iptables。

  • 安装ipset和ipvsadm

    [root@master ~]# yum install ipset ipvsadm -y
    
  • 写入脚本文件

    [root@master ~]# cat <<EOF> /etc/sysconfig/modules/ipvs.modules
    > #!/bin/bash
    modprobe -- ip_vs
    modprobe -- ip_vs_rr
    modprobe -- ip_vs_wrr
    modprobe -- ip_vs_sh
    modprobe -- nf_conntrack_ipv4
    EOF
    
  • 执行

    [root@master ~]# chmod +x /etc/sysconfig/modules/ipvs.modules 
    #执行脚本文件
    [root@master ~]# /bin/bash /etc/sysconfig/modules/ipvs.modules
    

    查看对应的模块是否加载成功

    [root@master ~]# lsmod |grep -e ip_vs -e nf_conntrack_ipv4
    ip_vs_sh               12688  0 
    ip_vs_wrr              12697  0 
    ip_vs_rr               12600  0 
    ip_vs                 145497  6 ip_vs_rr,ip_vs_sh,ip_vs_wrr
    nf_conntrack_ipv4      15053  15 
    nf_defrag_ipv4         12729  1 nf_conntrack_ipv4
    nf_conntrack          139264  10 ip_vs,nf_nat,nf_nat_ipv4,nf_nat_ipv6,xt_conntrack,nf_nat_masquerade_ipv4,nf_nat_masquerade_ipv6,nf_conntrack_netlink,nf_conntrack_ipv4,nf_conntrack_ipv6
    libcrc32c              12644  4 xfs,ip_vs,nf_nat,nf_conntrack
    
    

    重启系统。

  • 开启ipvs

    [root@master ~]# kubectl edit cm kube-proxy -n kube-system
    

    将mode改为ipvs

    在这里插入图片描述

    删除kube-proxy的pod并重建

    [root@master ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
    pod "kube-proxy-lwls6" deleted
    pod "kube-proxy-scwzg" deleted
    pod "kube-proxy-sn9kc" deleted
    

    查看ipvs,发现产生了一批规则

    [root@master ~]# ipvsadm -Ln
    IP Virtual Server version 1.2.1 (size=4096)
    Prot LocalAddress:Port Scheduler Flags
      -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
    TCP  172.17.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.17.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.18.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.18.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.19.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.19.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.21.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.21.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.22.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.22.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.24.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.24.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  172.25.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  172.25.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  192.168.200.101:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  192.168.200.101:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.96.0.1:443 rr
      -> 192.168.200.101:6443         Masq    1      0          0         
    TCP  10.96.0.10:53 rr
      -> 10.244.0.14:53               Masq    1      0          0         
      -> 10.244.0.16:53               Masq    1      0          0         
    TCP  10.96.0.10:9153 rr
      -> 10.244.0.14:9153             Masq    1      0          0         
      -> 10.244.0.16:9153             Masq    1      0          0         
    TCP  10.96.34.175:443 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.96.106.156:8000 rr
      -> 10.244.0.13:8000             Masq    1      0          0         
    TCP  10.96.127.29:443 rr
      -> 10.244.2.40:4443             Masq    1      0          0         
    TCP  10.96.253.220:80 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.0:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.0:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    TCP  10.244.0.1:30002 rr
      -> 10.244.1.95:80               Masq    1      0          0         
      -> 10.244.1.97:80               Masq    1      0          0         
      -> 10.244.2.41:80               Masq    1      0          0         
    TCP  10.244.0.1:32000 rr
      -> 10.244.0.15:8443             Masq    1      0          0         
    UDP  10.96.0.10:53 rr
      -> 10.244.0.14:53               Masq    1      0          0         
      -> 10.244.0.16:53               Masq    1      0          0   
    

2. 配置说明(资源文件清单)

kind: Service  #资源类型
apiVersion: v1 #资源版本
metadata: 
  name: service
  namespace: dev
spec:
  selector:  #标签选择器,用于确定当前service代理哪些pod
    app: nginx
  type: #service类型,指定service的访问方式
  clusterIp: #虚拟服务的ip地址
  sessionAffinity: #session亲和性,支持ClientIp,None两个选项
  ports: #端口信息
    - protocol: TCP
      port: 3017  #service端口
      targetPort: 5003  #pod端口
      nodePort: 31122   #主机端口

Service类型

  • ClusterIp:默认值,它是K8S系统自动分配的虚拟IP,只能在集群内部访问
  • NodePort:将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
  • LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
  • ExternalName:把集群外部的服务引入到集群内部直接使用

3. 使用

利用deployment创建出3个pod,为pod设置app=nginx-pod的标签

创建deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: pc-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata: 
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports: 
        - containerPort: 80
[root@master service]# kubectl create -f deployment.yaml 
deployment.apps/pc-deployment created
[root@master service]# kubectl get pod -n dev -o wide
NAME                             READY   STATUS    RESTARTS   AGE   IP             NODE    NOMINATED NODE   READINESS GATES
pc-deployment-6756f95949-rdpc5   1/1     Running   0          65s   10.244.2.45    node2   <none>           <none>
pc-deployment-6756f95949-sd724   1/1     Running   0          65s   10.244.1.120   node1   <none>           <none>
pc-deployment-6756f95949-xbk6d   1/1     Running   0          65s   10.244.1.121   node1   <none>           <none>

通过pod的Ip加上容器端口80访问nginx,验证是否可以访问

在这里插入图片描述

在这里插入图片描述

为了方便后面的测试,修改下面三台nginx的index.html页面(三台修改的Ip地址不一致)

#修改第一个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-sd724 -n dev -- /bin/sh
# echo "10.244.1.62" > /usr/share/nginx/html/index.html
# exit
#修改第二个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-xbk6d -n dev -- /bin/sh
# echo "10.244.2.32" > /usr/share/nginx/html/index.html
# exit
#修改第三个pod
[root@master ~]# kubectl exec -it pc-deployment-6756f95949-rdpc5 -n dev -- /bin/sh
# echo "10.244.1.61" > /usr/share/nginx/html/index.html
# exit

在这里插入图片描述

3.1 ClusterIp类型的Service

创建service-clusterip.yaml文件

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: ClusterIP #clusterIP: 10.96.96.96  #service的Ip地址,如果不写,会默认生成一个
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
[root@master service]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
[root@master service]# kubectl get svc service-clusterip -n dev
NAME                TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE
service-clusterip   ClusterIP   10.96.66.152   <none>        80/TCP    8s
[root@master service]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.96.66.152
IPs:               10.96.66.152
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  None
Events:            <none>
[root@master service]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn      
TCP  10.96.66.152:80 rr
  -> 10.244.1.120:80              Masq    1      0          0         
  -> 10.244.1.121:80              Masq    1      0          0         
  -> 10.244.2.45:80               Masq    1      0          0         

3.2 EndPoint

从上面的信息中我们看到有个字段叫EndpointsEndpoint是Kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有Pod的访问地址,它是根据service配置文件中的selector描述产生的。

一个service由一组Pod组成,这些Pod通过Endpoints暴露出来,Endpoints是实现实际服务的端点集合。换言之,service和Pod之间的联系是通过Endpoints实现的。

在这里插入图片描述

[root@master service]# kubectl get endpoints -n dev -o wide
NAME                ENDPOINTS                                        AGE
service-clusterip   10.244.1.120:80,10.244.1.121:80,10.244.2.45:80   5m7s

3.3 负载分发策略

对service的访问被分发到了后端的pod上去,目前k8s提供了两种负载分发策略:

  • 如果不定义,默认使用kube-proxy的策略,比如随机,轮询
  • 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到一个固定的pod上,此模式可以使在spec中添加sessionAffinity:ClientIP选项
#循环访问测试
[root@master service]# while true;do curl 10.96.66.152:80;sleep 5;done;
10.244.2.45
10.244.1.121
10.244.1.120
10.244.2.45
10.244.1.121
10.244.1.120

修改分发策略为sessionAffinity:ClientIP

apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  sessionAffinity: ClientIP
  selector:
    app: nginx-pod
  clusterIP: 10.96.66.152  #service的Ip地址,如果不写,会默认生成一个
  type: ClusterIP
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
[root@master service]# kubectl delete -f service-clusterip.yaml           
service "service-clusterip" deleted
[root@master service]# vim service-clusterip.yaml 
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: ClusterIP
  ports:
  - port: 80  #service端口
apiVersion: v1
kind: Service
metadata:
  name: service-clusterip
  namespace: dev
spec:
  sessionAffinity: ClientIP
  selector:
    app: nginx-pod
  clusterIP: 10.96.66.152  #service的Ip地址,如果不写,会默认生成一个
  type: ClusterIP
  ports:
  - port: 80  #service端口
    targetPort: 80  #pod端口
                                                                                                                            
"service-clusterip.yaml" 14L, 320C 已写入                                                                        
[root@master service]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
[root@master service]# kubectl describe svc service-clusterip -n dev
Name:              service-clusterip
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.96.66.152
IPs:               10.96.66.152
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  ClientIP
Events:            <none>

重新查看ipvs映射规则【persistent代表持久】,发现新增了persistent 10800秒,代表持续180分钟

[root@master service]# ipvsadm -Ln
TCP  10.96.66.152:80 rr persistent 10800
  -> 10.244.1.120:80              Masq    1      0          1         
  -> 10.244.1.121:80              Masq    1      0          1         
  -> 10.244.2.45:80               Masq    1      0          1    

再次进行循环访问测试,发现这次只访问一个pod

[root@master service]# while true;do curl 10.96.66.218:80;sleep 5;done;
10.244.2.45
10.244.2.45
10.244.2.45
10.244.2.45

3.4 HeadLiness类型的Service

在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,k8s提供了HeadLiness Service,这类Service不会分配ClusterIP,如果想要访问Service,只能通过service的域名进行查询。

创建service-headliness.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-headliness
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None  #将clusterIP设置为None,即可创建headliness Service
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80
[root@master service]# kubectl create -f service-headliness.yaml
service/service-headliness created
[root@master service]# kubectl get svc service-headliness -n dev
NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
service-headliness   ClusterIP   None         <none>        80/TCP    6s
[root@master service]# kubectl describe svc service-headliness -n dev
Name:              service-headliness
Namespace:         dev
Labels:            <none>
Annotations:       <none>
Selector:          app=nginx-pod
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                None
IPs:               None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.120:80,10.244.1.121:80,10.244.2.45:80
Session Affinity:  None
Events:            <none>

查看域名解析情况

[root@master service]# kubectl exec -it pc-deployment-6756f95949-rdpc5 -n dev -- /bin/sh
# cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local
options ndots:5
# exit
#需要进入pod访问 但是pod内 无curl命令
#通过域名进行查询验证一下即可
[root@master ~]# yum -y install bind-utils
[root@master ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3116
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-headliness.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.120
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.45
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.121

;; Query time: 9 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 日 814 13:18:02 CST 2022
;; MSG SIZE  rcvd: 237

3.5 NodePort类型的Service

在前面的应用中,创建的Service的IP地址只有集群内部可以访问,如果希望Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。

在这里插入图片描述

创建service-nodeport.yaml

apiVersion: v1
kind: Service
metadata: 
  name: service-nodeport
  namespace: dev
spec:
  selector:
    app: nginx-pod
  type: NodePort  #service类型
  ports:
  - port: 80
    nodePort: 30003 #指定绑定的node的端口(默认的取值范围是:30000-32767),如果不指定,会默认分配
    targetPort: 80
[root@master service]# kubectl create -f service-nodeport.yaml    
service/service-nodeport created
[root@master service]# kubectl get svc service-nodeport -n dev
NAME               TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
service-nodeport   NodePort   10.96.114.171   <none>        80:30003/TCP   14s

在这里插入图片描述

3.6 LoadBalancer类型的Service

LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。

在这里插入图片描述

3.7 ExternalName类型的Service

ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此Service就可以访问到外部的服务了

在这里插入图片描述

创建service-externalname.yaml

apiVersion: v1
kind: Service
metadata:
  name: service-externalname
  namespace: dev
spec:
  type: ExternalName  #service类型
  externalName: www.baidu.com  #改成ip地址也可以
[root@master service]# kubectl create -f service-externalname.yaml 
service/service-externalname created
[root@master service]# kubectl get svc service-externalname -n dev
NAME                   TYPE           CLUSTER-IP   EXTERNAL-IP     PORT(S)   AGE
service-externalname   ExternalName   <none>       www.baidu.com   <none>    5s
[root@master service]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51694
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-externalname.dev.svc.cluster.local. IN A

;; ANSWER SECTION:
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com.          30      IN      CNAME   www.a.shifen.com.
www.a.shifen.com.       30      IN      A       14.215.177.39
www.a.shifen.com.       30      IN      A       14.215.177.38

;; Query time: 98 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 日 814 21:52:44 CST 2022
;; MSG SIZE  rcvd: 247

4. Ingress

4.1 介绍

在前面的学习中已经知道,Service对集群之外暴露服务的主要方式有两种:NodePort和LoadBalancer,但是这两种方式,都有一定的缺点:

  • NodePort方式的缺点是会占用很多集群机器的端口,那么当集群服务变多的时候,这个缺点就愈发明显
  • LB方式的缺点是每个service需要一个LB,浪费、麻烦,并且需要k8s之外设备的支持

基于这种现状,k8s提供了Ingress资源对象。工作机制大致如下图所示:

在这里插入图片描述

实际上,Ingress相当于一个7层的负载均衡器,是k8s对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的配置,然后对外部提供服务。在这里有两个核心概念:

  • ingress:k8s中的一个对象,作用是定义请求如何转发到service的规则
  • ingress controller:具体实现反向代理及负载均衡的程序,对ingress定义的规则进行解析,根据配置的规则来实现请求转发,实现方式有很多,比如nginx,contour,haproxy等等。

Ingress(以nginx为例)的工作原理如下:

  1. 用户编写ingress规则,说明哪个域名对应k8s集群中的哪个service
  2. ingress控制器动态感知ingress服务规则的变化,然后生成一段对应的nginx配置
  3. ingress控制器会将生成的nginx配置写入到一个运行着的nginx服务中,并动态更新
  4. 到此为止,其实真正在工作的就是一个nginx了,内部配置了用户定义的请求转发规则

在这里插入图片描述

4.2 使用

4.2.1 搭建ingress环境
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.3.0/deploy/static/provider/cloud/deploy.yaml

由于一些原因,镜像无法下载所以资料中准备好了修改过后的deploy.yaml

[root@master ingress-controller]# kubectl label nodes node1 hasIngress=true
[root@master ingress-controller]# kubectl label nodes node2 hasIngress=true
[root@master ingress-controller]# kubectl apply -f deploy.yaml
namespace/ingress-nginx created
serviceaccount/ingress-nginx created
serviceaccount/ingress-nginx-admission created
role.rbac.authorization.k8s.io/ingress-nginx created
role.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrole.rbac.authorization.k8s.io/ingress-nginx created
clusterrole.rbac.authorization.k8s.io/ingress-nginx-admission created
rolebinding.rbac.authorization.k8s.io/ingress-nginx created
rolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx created
clusterrolebinding.rbac.authorization.k8s.io/ingress-nginx-admission created
configmap/ingress-nginx-controller created
service/ingress-nginx-controller created
service/ingress-nginx-controller-admission created
daemonset.apps/ingress-nginx-controller created
job.batch/ingress-nginx-admission-create created
job.batch/ingress-nginx-admission-patch created
ingressclass.networking.k8s.io/nginx created
validatingwebhookconfiguration.admissionregistration.k8s.io/ingress-nginx-admission created
[root@master ingress-controller]# kubectl get pod -n ingress-nginx -o wide 
[root@master ingress-controller]# kubectl get pod -n ingress-nginx -o wide 
NAME                                   READY   STATUS      RESTARTS   AGE   IP                NODE    NOMINATED NODE   READINESS GATES
ingress-nginx-admission-create-vlr4h   0/1     Completed   0          24m   10.244.1.125      node1   <none>           <none>
ingress-nginx-admission-patch-vlx7d    0/1     Completed   1          24m   10.244.1.126      node1   <none>           <none>
ingress-nginx-controller-m5jld         1/1     Running     0          24m   192.168.200.102   node1   <none>           <none>
ingress-nginx-controller-t52dn         1/1     Running     0          24m   192.168.200.103   node2   <none>           <none>
[root@master ingress-controller]# kubectl get svc -n ingress-nginx
NAME                                 TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx-controller             LoadBalancer   10.96.49.11     <pending>     80:31915/TCP,443:30664/TCP   24m
ingress-nginx-controller-admission   ClusterIP      10.96.201.100   <none>        443/TCP                      24m
4.2.2 准备service和pod

创建下图所示的模型

在这里插入图片描述

创建tomcat-nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: nginx-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx-pod
  template:
    metadata:
      labels:
        app: nginx-pod
    spec:
      containers:
      - name: nginx
        image: nginx:1.17.1
        ports: 
        - containerPort: 80

---

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: tomcat-deployment
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      app: tomcat-pod
  template:
    metadata:
      labels:
        app: tomcat-pod
    spec:
      containers:
      - name: tomcat
        image: tomcat:8.5-jre10-slim
        ports: 
        - containerPort: 8080

---

apiVersion: v1
kind: Service
metadata: 
  name: nginx-service
  namespace: dev
spec:
  selector:
    app: nginx-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 80

---

apiVersion: v1
kind: Service
metadata: 
  name: tomcat-service
  namespace: dev
spec:
  selector:
    app: tomcat-pod
  clusterIP: None
  type: ClusterIP
  ports:
  - port: 8080
    targetPort: 8080
[root@master service]# kubectl create -f tomcat-nginx.yaml 
deployment.apps/nginx-deployment created
deployment.apps/tomcat-deployment created
service/nginx-service created
service/tomcat-service created
[root@master service]# kubectl get svc -n dev
NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
nginx-service    ClusterIP   None         <none>        80/TCP     50s
tomcat-service   ClusterIP   None         <none>        8080/TCP   50s
4.2.3 Http代理

创建ingress-http.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-http
  namespace: dev
spec:
  ingressClassName: nginx
  rules:
  - host: nginx.test.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: nginx-service
            port:
              number: 80
  - host: tomcat.test.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: tomcat-service
            port:
              number: 8080

[root@master service]# kubectl create -f ingress-http.yaml 
ingress.networking.k8s.io/ingress-http created
[root@master service]# kubectl get ing ingress-http -n dev
NAME           CLASS   HOSTS                            ADDRESS   PORTS   AGE
ingress-http   nginx   nginx.test.com,tomcat.test.com             80      22s
[root@master service]# kubectl describe ing ingress-http -n dev
Name:             ingress-http
Labels:           <none>
Namespace:        dev
Address:          
Default backend:  default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
Rules:
  Host             Path  Backends
  ----             ----  --------
  nginx.test.com   
                   /   nginx-service:80 (10.244.1.120:80,10.244.1.121:80,10.244.1.129:80 + 3 more...)
  tomcat.test.com  
                   /   tomcat-service:8080 (10.244.1.127:8080,10.244.1.128:8080,10.244.2.49:8080)
Annotations:       <none>
Events:
  Type    Reason  Age   From                      Message
  ----    ------  ----  ----                      -------
  Normal  Sync    29s   nginx-ingress-controller  Scheduled for sync
  Normal  Sync    29s   nginx-ingress-controller  Scheduled for sync

修改本机的hosts文件

node虚拟机的IP地址    nginx.test.com
node虚拟机的IP地址    tomcat.test.com

在这里插入图片描述

查看ingress为service提供的端口号

[root@master service]# kubectl get svc -n ingress-nginx
NAME                                 TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
ingress-nginx-controller             LoadBalancer   10.96.49.11     <pending>     80:31915/TCP,443:30664/TCP   38m
ingress-nginx-controller-admission   ClusterIP      10.96.201.100   <none>        443/TCP                      38m

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/590001.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Springboot的教学资源共享平台(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的教学资源共享平台&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

【Cpp】类和对象#构造函数 析构函数

标题&#xff1a;【Cpp】类和对象#构造函数 析构函数 水墨不写bug &#xff08;图片来源于网络&#xff09; 正文开始&#xff1a; &#xff08;一&#xff09;构造函数 构造函数是特殊的成员函数&#xff0c;需要注意的是&#xff0c;构造函数虽然名称叫构造&#xff0c;但…

nginx变量自定义日志收集

内置变量 $remote_addr&#xff1b;存放了客户端的地址&#xff0c;注意是客户端的公网IP&#xff0c;也就是一家人访问一个网站&#xff0c;则会显示为路由器的公网IP。 $args&#xff1b;变量中存放了URL中的指令 [rootlocalhost conf.d]# cat pc.conf server {listen 80;se…

数组的扩容与缩容

数组的扩容与缩容 文章目录 数组的扩容与缩容数组的扩容内存分析 数组的缩容内存分析内存分析 数组的扩容 数组扩容是指当原有数组的空间不足以容纳更多的元素时&#xff0c;创建一个新的、长度更大的数组&#xff0c;并将原数组中的元素复制到新数组中&#xff0c;然后更新原…

C++入门第二节--关键字、命名空间、输入输出

点赞关注不迷路&#xff01;本节涉及c入门关键字、命名空间、输入输出... 1. C关键字 C总计63个关键字&#xff0c;C语言32个关键字 asmdoifreturntrycontinueautodoubleinlineshorttypedefforbooldynamic_castintsignedtypeidpublicbreakelselongsizeoftypenamethrowcaseen…

如何完全卸载QT

第一步&#xff0c;用QT自带的软件卸载QT 第二步&#xff0c;卸载下面路径的所有QT配置 C:用户/(你的用户)/AppData/Local/目录下所有与Qt相关内容 C:用户/(你的用户)/AppData/Local/Temp/所有与Qt相关内容 C:用户/(你的用户)/AppData/Roaming/所有与Qt相关内容

C 深入指针(2)

目录 1 野指针 1.1 成因 1.2 如何规避野指针 2 assert 断言 2.1 用法 2.2 assert 的优点 2.1 assert 的缺点 3 小注解 3.1 Debug 和 Release 1 野指针 【概念】&#xff1a; 野指针就是指针指向的位置是不可知的&#xff08;随机的、不正确的、没有明确限制的&#…

场景文本检测识别学习 day06(Vi-Transformer论文精读、MAE论文阅读)

Vi-Transformer论文精读 在NLP领域&#xff0c;基于注意力的Transformer模型使用的非常广泛&#xff0c;但是在计算机视觉领域&#xff0c;注意力更多是和CNN一起使用&#xff0c;或者是单纯将CNN的卷积替换成注意力&#xff0c;但是整体的CNN 架构没有发生改变VIT说明&#x…

与 Apollo 共创生态:企业解决方案Apollo X 9.0,七载同舟,携手远航,视频简说

目录 介绍背景方案与项目Apollo 开源项目Apollo X 企业解决方案落地因素助力企业落地流程 预置套件需求定义功能定义场景用例融合技术面向园区功能安全Cyber RT企业硬件套件 开发工具链研发迭代范式协同研发工具链标定工具地图工具仿真平台数据闭环 企业合作模式合作方式 共创计…

[初阶数据结构】时间复杂度与空间复杂度

前言 &#x1f4da;作者简介&#xff1a;爱编程的小马&#xff0c;正在学习C/C&#xff0c;Linux及MySQL。 &#x1f4da;本文收录于初阶数据结构系列&#xff0c;本专栏主要是针对时间、空间复杂度&#xff0c;顺序表和链表、栈和队列、二叉树以及各类排序算法&#xff0c;持续…

nuxt3使用记录六:禁用莫名其妙的Tailwind CSS(html文件大大减小)

发现这个问题是因为&#xff0c;今天我突然很好奇&#xff0c;我发现之前构建的自动产生的200.html和404.html足足290k&#xff0c;怎么这么大呢&#xff1f;不是很占用我带宽&#xff1f; 一个啥东西都没有的静态页面&#xff0c;凭啥这么大&#xff01;所以我就想着手动把他…

ICode国际青少年编程竞赛- Python-1级训练场-基础训练2

ICode国际青少年编程竞赛- Python-1级训练场-基础训练2 1、 a 4 # 变量a存储的数字是4 Dev.step(a) # 因为变量a的值是4&#xff0c;所以Dev.step(a)就相当于Dev.step(4)2、 a 1 # 变量a的值为1 for i in range(4):Dev.step(a)Dev.turnLeft()a a 1 # 变量a的值变为…

未来科技的前沿:深入探讨人工智能的进展、机器学习技术和未来趋势

文章目录 一、人工智能的定义和概述1. 人工智能的基本概念2. 人工智能的发展历史 二、技术深入&#xff1a;机器学习、深度学习和神经网络1. 机器学习2. 深度学习3. 神经网络 三、人工智能的主要目标和功能1. 自动化和效率提升2. 决策支持和风险管理3. 个性化服务和预测未来 本…

DHCPv4_CLIENT_ALLOCATING_01: 在其本地物理子网上广播DHCPDISCOVER消息

测试目的&#xff1a; 确保客户端能够在其本地物理子网上广播DHCPDISCOVER消息。 描述&#xff1a; 该测试用例旨在验证DHCP客户端是否能够正确地在其本地物理子网上广播DHCPDISCOVER消息&#xff0c;以便进行IP地址的自动分配。 测试拓扑&#xff1a; 测试步骤&#xff1a…

机器学习:深入解析SVM的核心概念【三、核函数】

核函数 **问题一&#xff1a;为什么说是有限维就一定存在高维空间可分呢&#xff1f;**原始空间与特征空间为什么映射到高维空间可以实现可分核函数的作用 **问题二&#xff1a;最终怎么得到函数**从对偶问题到决策函数的步骤&#xff1a;结论 **问题三&#xff1a;为什么说特征…

【Proteus】LED呼吸灯 直流电机调速

1.LED呼吸灯 #include <REGX51.H> sbit LEDP2^0; void delay(unsigned int t) {while(t--); } void main() {unsigned char time,i;while(1){for(time0;time<100;time){for(i0;i<20;i){LED0;delay(time);LED1;delay(100-time);}}for(time100;time>0;time--){fo…

003 redis分布式锁 jedis分布式锁 Redisson分布式锁 分段锁

文章目录 Redis分布式锁原理1.使用set的命令时&#xff0c;同时设置过期时间2.使用lua脚本&#xff0c;将加锁的命令放在lua脚本中原子性的执行 Jedis分布式锁实现pom.xmlRedisCommandLock.javaRedisCommandLockTest.java 锁过期问题1乐观锁方式&#xff0c;增加版本号(增加版本…

GPT-1

GPT 系列是 OpenAI 的一系列预训练模型&#xff0c;GPT 的全称是 Generative Pre-Trained Transformer&#xff0c;顾名思义&#xff0c;GPT 的目标是通过 Transformer&#xff0c;使用预训练技术得到通用的语言模型。目前已经公布论文的有 GPT-1、GPT-2、GPT-3。 最近非常火的…

腾讯云ubuntu新建用户后,命令行只显示$

这是因为&#xff0c;新建用户命令行解释器默认是sh&#xff0c;需要手动切换为bash&#xff0c;bash可以认为是sh的加强版本。 所以我们只需要将&#xff0c;shell切换为bash就好了。 切换到root 修改配置文件 vim/etc/bash 将sh修改为bash

AcWing 3194:最大的矩形 ← 笛卡尔树

【题目来源】https://www.acwing.com/problem/content/3197/【题目描述】 在横轴上放了 n 个相邻的矩形&#xff0c;每个矩形的宽度是 1&#xff0c;而第 i&#xff08;1≤i≤n&#xff09;个矩形的高度是 hi。 这 n 个矩形构成了一个直方图。 例如&#xff0c;下图中六个矩形的…