【LangChain】向量存储(Vector stores)

LangChain学习文档

  • 【LangChain】向量存储(Vector stores)
  • 【LangChain】向量存储之FAISS

概要

存储和搜索非结构化数据的最常见方法之一是嵌入它并存储生成的嵌入向量,然后在查询时嵌入非结构化查询并检索与嵌入查询“最相似”的嵌入向量。向量存储负责存储嵌入数据并为您执行向量搜索。

在这里插入图片描述

内容

本篇讲述与 VectorStore 相关的基本功能。使用向量存储的一个关键部分是创建要放入其中的向量,这通常是通过嵌入创建的。因此,建议您在深入研究之前熟悉文本嵌入模型接口

有许多很棒的向量存储选项,以下是一些免费、开源且完全在本地计算机上运行的选项。查看许多出色的托管产品的所有集成。

文本嵌入模型接口

我们想要使用 OpenAIEmbeddings,因此我们必须获取 OpenAI API 密钥。

import os
import getpass

os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')

下面展示三个嵌入文本模型接口

Chroma

本篇讲述使用Chroma向量数据库,该数据库作为一个库在本地计算机上运行。

pip install chromadb

我们想要使用 OpenAIEmbeddings,因此我们必须获取 OpenAI API 密钥。

from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

# 加载文档,将其分割成块,嵌入每个块并将其加载到向量存储中。
raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
# 注意这里
db = Chroma.from_documents(documents, OpenAIEmbeddings())

FAISS

本演练使用 FAISS 矢量数据库,该数据库利用 Facebook AI 相似性搜索 (FAISS) 库。

pip install faiss-cpu
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS

# 加载文档,将其分割成块,嵌入每个块并将其加载到向量存储中。
raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
db = FAISS.from_documents(documents, OpenAIEmbeddings())

Lance

本笔记本展示了如何使用与基于 Lance 数据格式的 LanceDB 矢量数据库相关的功能。

pip install lancedb
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import LanceDB

import lancedb
# 基于 Lance 数据格式
db = lancedb.connect("/tmp/lancedb")
table = db.create_table(
    "my_table",
    data=[
        {
            "vector": embeddings.embed_query("Hello World"),
            "text": "Hello World",
            "id": "1",
        }
    ],
    mode="overwrite",
)

# 加载文档,将其分割成块,嵌入每个块并将其加载到向量存储中。
raw_documents = TextLoader('../../../state_of_the_union.txt').load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
# 创建嵌入的向量存储
db = LanceDB.from_documents(documents, OpenAIEmbeddings(), connection=table)

相似性搜索

query = "总统对科坦吉·布朗·杰克逊说了些什么"
docs = db.similarity_search(query)
print(docs[0].page_content)

结果:

    今晚。我呼吁参议院: 通过《投票自由法案》。通过约翰·刘易斯投票权法案。当你这样做的时候,通过《披露法案》,这样美国人就可以知道谁在资助我们的选举。
	
	今晚,我要向一位毕生为这个国家服务的人表示敬意:斯蒂芬·布雷耶法官——退伍军人、宪法学者、即将退休的美国最高法院法官。布雷耶法官,感谢您的服务。
	
	总统最重要的宪法责任之一是提名某人在美国最高法院任职。
	
	四天前,当我提名巡回上诉法院法官科坦吉·布朗·杰克逊时,我就这样做了。我们国家最顶尖的法律头脑之一,他将继承布雷耶大法官的卓越遗产。

通过向量进行相似性搜索(Similarity search by vector)

还可以使用similarity_search_by_vector 与给定嵌入向量相似的文档进行搜索,该向量接受嵌入向量作为参数而不是字符串。

embedding_vector = OpenAIEmbeddings().embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)
print(docs[0].page_content)

查询相同,所以结果也相同。

    Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections.

    Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.

    One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

    And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.

异步操作(Asynchronous operations)

向量存储通常作为需要一些 IO 操作的服务,一般是单独运行的,因此它们可能会被异步调用。这会带来性能优势,因为您不必浪费时间等待外部服务的响应。如果您使用异步框架(例如 FastAPI),这一点也可能很重要。

Langchain 支持向量存储上的异步操作。所有方法都可以使用其异步对应方法进行调用,前缀 a 表示异步。

Qdrant 是一个向量存储,它支持所有异步操作,因此将在本节中使用它。

# 单独执行安装
pip install qdrant-client
# 引入模块
from langchain.vectorstores import Qdrant

异步创建向量存储(Create a vector store asynchronously)

db = await Qdrant.afrom_documents(documents, embeddings, "http://localhost:6333")

(相似性搜索)Similarity search

query = "总统对科坦吉·布朗·杰克逊说了些什么"
docs = await db.asimilarity_search(query)
print(docs[0].page_content)

结果:

今晚。我呼吁参议院: 通过《投票自由法案》。通过约翰·刘易斯投票权法案。当你这样做的时候,通过《披露法案》,这样美国人就可以知道谁在资助我们的选举。
今晚,我要向一位毕生为这个国家服务的人表示敬意:斯蒂芬·布雷耶法官——退伍军人、宪法学者、即将退休的美国最高法院法官。布雷耶法官,感谢您的服务。
总统最重要的宪法责任之一是提名某人在美国最高法院任职。
四天前,当我提名巡回上诉法院法官科坦吉·布朗·杰克逊时,我就这样做了。我们国家最顶尖的法律头脑之一,他将继承布雷耶大法官的卓越遗产。

通过向量进行相似性搜索(Similarity search by vector)

embedding_vector = embeddings.embed_query(query)
docs = await db.asimilarity_search_by_vector(embedding_vector)

最大边际相关性搜索 (MMR)(最大边际相关性搜索 (MMR))

最大边际相关性优化了所选文档之间查询的相似性和多样性。异步 API 也支持它。

query = "总统对科坦吉·布朗·杰克逊说了些什么"
found_docs = await qdrant.amax_marginal_relevance_search(query, k=2, fetch_k=10)
for i, doc in enumerate(found_docs):
    print(f"{i + 1}.", doc.page_content, "\n")

结果:

1. 今晚。我呼吁参议院: 通过《投票自由法案》。通过约翰·刘易斯投票权法案。当你这样做的时候,通过《披露法案》,这样美国人就可以知道谁在资助我们的选举。
今晚,我要向一位毕生为这个国家服务的人表示敬意:斯蒂芬·布雷耶法官——退伍军人、宪法学者、即将退休的美国最高法院法官。布雷耶法官,感谢您的服务。
总统最重要的宪法责任之一是提名某人在美国最高法院任职。
四天前,当我提名巡回上诉法院法官科坦吉·布朗·杰克逊时,我就这样做了。我们国家最顶尖的法律头脑之一,他将继承布雷耶大法官的卓越遗产。
2.我们无法改变我们之间的分歧。但我们可以改变我们前进的方式——在 COVID-19 和我们必须共同面对的其他问题上。
最近,在威尔伯特·莫拉警官和他的搭档杰森·里维拉警官的葬礼几天后,我访问了纽约市警察局。
他们当时正在接听 9-1-1 的电话,一名男子用偷来的枪开枪打死了他们。
莫拉警官当时 27 岁。
里维拉警官当时22岁。
这两位多米尼加裔美国人都在同一条街道上长大,后来他们选择担任警察巡逻。
我与他们的家人交谈,告诉他们,我们永远欠他们的牺牲,我们将继续履行他们的使命,恢复每个社区应有的信任和安全。
我已经研究这些问题很长时间了。
我知道什么是有效的:投资于预防犯罪和社区警察,他们会遵守规则,了解社区,并且能够恢复信任和安全。

总结

本篇主要讲述的内容,其实都在这幅图里:
在这里插入图片描述

  1. 加载数据
  2. 通过embed,转成向量存储
  3. 查询条件进行embed
  4. 在3的基础上,再进行向量存储库的搜索

参考地址:

https://python.langchain.com/docs/modules/data_connection/vectorstores/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/58986.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Jmeter】配置不同业务请求比例,应对综合场景压测

目录 前言 Jmeter5.0新特性 核心改进 其他变化 资料获取方法 前言 Jmeter 5.0这次的核心改进是在许多地方改进了对 Rest 的支持,此外还有调试功能、录制功能的增强、报告的改进等。 我也是因为迁移到了Mac,准备在Mac上安装Jmeter的时候发现它已经…

机器学习---概述(一)

文章目录 1.人工智能、机器学习、深度学习2.机器学习的工作流程2.1 获取数据集2.2 数据基本处理2.3 特征工程2.3.1 特征提取2.3.2 特征预处理2.3.3 特征降维 2.4 机器学习2.5 模型评估 3.机器学习的算法分类3.1 监督学习3.1.1 回归问题3.1.2 分类问题 3.2 无监督学习3.3 半监督…

Scikit Learn识别手写数字 -- 机器学习项目基础篇(6)

Scikit learn是机器学习社区中使用最广泛的机器学习库之一,其背后的原因是代码的易用性和机器学习开发人员构建机器学习模型所需的几乎所有功能的可用性。在本文中,我们将学习如何使用sklearn在手写数字数据集上训练MLP模型。 其优势是: 它提…

Springboot 多数据源 dynamic-datasource动态添加移除数据源

0.前言 上一篇文章我们讲了如何通过多数据源组件,在Spring boot Druid 连接池项目中配置多数据源,并且通过DS注解的方式切换数据源,《Spring Boot 配置多数据源【最简单的方式】》。但是在多租户的业务场景中,我们通常需要手动的…

【方法】Excel表格如何拆分数据?

当需要把多个数据逐个填到Excel单元格的时候,我们可以利用Excel的数据拆分功能,可以节省不少时间。 小编以下面的数据为例,看看如何进行数据拆分。 首先,要选择数字所在的单元格,然后依次点击菜单栏中的“数据”>…

FFmpeg解码详细流程

介绍 FFmpeg的 libavcodec 模块完成音视频多媒体的编解码模块。老版本的 FFmpeg 将avcodec_decode_video2()作为视频的解码函数 API,将avcodec_decode_audio4()作为音频的解码函数 API;从 3.4版本开始已经将二者标记为废弃过时 API(attribut…

Dockerfile构建lamp镜像

1、构建目录 [rootdocker ~]# mkdir compose_lamp [rootdocker ~]# cd compose_lamp/ 2、编写Docekerfile [rootdocker compose_lamp]# vim Dockerfile #基础镜像 FROM centos:7#维护该镜像的用户信息 MAINTAINER Crushlinux <crushlinux163.com>#安装httpd RUN yum -…

反转链表的两种方法

反转链表的两种方法 题目介绍 题目链接 206. 反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 效果图如下所示 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]解法一&#xff1a;迭代方法 解题思路&#xf…

Chapter 10: Dictionaries | Python for Everybody 讲义笔记_En

文章目录 Python for Everybody课程简介DictionariesDictionariesDictionary as a set of countersDictionaries and filesLooping and dictionariesAdvanced text parsingDebuggingGlossary Python for Everybody Exploring Data Using Python 3 Dr. Charles R. Severance 课程…

Spring:JDBCTemplate

JDBCTemplate 概述 概述 JDBC&#xff08;Java DataBase Connectivity&#xff0c;Java 数据库连接&#xff09;&#xff0c; 一 种用于执行 SQL 语句的 Java API&#xff08;Application Programming Interface &#xff0c; 应用程序设计接口 &#xff09;&#xff0c;可以为…

计算机网络(2) --- 网络套接字UDP

计算机网络&#xff08;1&#xff09; --- 网络介绍_哈里沃克的博客-CSDN博客https://blog.csdn.net/m0_63488627/article/details/131967378?spm1001.2014.3001.5501 目录 1.端口号 2.TCP与UDP协议 1.TCP协议介绍 1.TCP协议 2.UDP协议 3.理解 2.网络字节序 发送逻辑…

小白到运维工程师自学之路 第六十六集 (docker 网络模型)

一、概述 Docker网络模型是指Docker容器在网络中的通信方式和组织结构。Docker容器通过网络连接&#xff0c;使得容器之间可以相互通信&#xff0c;并与主机和外部网络进行交互。 在Docker中&#xff0c;有几种不同的网络模型可供选择&#xff1a; 1、主机模式&#xff08;H…

网络安全(黑客)自学建议一一附学习路线

温馨提示&#xff1a;为了避免误入歧途&#xff0c;自学请优先看《网络安全法》。 下面是一些学习建议&#xff1a; 1、多请教有经验的人 切忌钻牛角尖&#xff0c;特别是刚入门的什么都不了解的情况下&#xff0c;可能你花好几天研究的一个东西&#xff0c;人10分钟就能搞定…

DBeaver连MySQL库报错public key retrieval is not allowed

连接报错: public key retrieval is not allowed解决办法&#xff1a; 右击你连接的库进行编辑连接&#xff08;或者直接按F4打开编辑&#xff09; 然后点击驱动属性里面进行设置 找到allowPublicKeyRetrieval属性&#xff0c;把值由false改为true 注&#xff1a;连接成功后如…

部署SpringBoot项目在服务器上,并通过swagger登录

1.项目编译打包 2.上传jar包到服务器并启动 xftp将打包好后的jar包传到虚拟机指定路径 java -jar执行该jar包 3.通过swagger登录 输入后点击下面的执行按钮 会得到一个tocken 4.将tocken放到postman的Headers中 5.修改url 例如我本地测试是http://localhost:8080/接口名&am…

【C++】继承的基本特性(定义,赋值转换,友元,静态成员,虚拟继承,默认成员函数,作用域)

文章目录 一、继承的定义1.定义格式2.继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承的作用域1. 在继承体系中基类和派生类都有独立的作用域。2.子类和父类中有同名成员3.成员函数的隐藏4.注意在实际中在继承体系里面最好不要定义同名的成员。 四、派生类的…

【WebRTC---序篇】(七)RTC多人连麦方案

服务端可以选择mediasoup&#xff0c;作为SFU服务器&#xff0c;只负责转发数据 下图举例三个Client (browser或者客户端)同时加入一个房间&#xff0c;每个app同时发布一路视频和一路音频&#xff0c;并且接受来自其他app的音视频流&#xff0c;mediasoup内部的结构如下&…

【诺依管理系统-前端】对话框

1.指定 v-model"openAllScene" 2.按钮代码 3.调用方法handleAddAllScene里面&#xff0c;只是openAllScene的值为true&#xff0c;调用显示对话框

unity tolua热更新框架教程(1)

git GitHub - topameng/tolua: The fastest unity lua binding solution 拉取到本地 使用unity打开&#xff0c;此处使用环境 打开前几个弹窗(管线和api升级)都点确定 修改项目设置 切换到安卓平台尝试打包编译 设置包名 查看报错 打开 屏蔽接口导出 重新生成 编译通过 …

Git常见问题

git clone 提示OpenSSL SSL_read git clone 时提示Connection was reset, errno 10054类错误 fatal: unable to acce ss https://github.com/fex-team/ueditor.git/: OpenSSL SSL_read: Connection was reset, errno 10054 备注&#xff1a;以下方法只是归纳整理&#xff0c;…