机器学习:深入解析SVM的核心概念【四、软间隔与正则化】

软间隔与正则化

    • 问题一:优化目标函数是如何得到的?得到的过程是怎样的?
    • 问题二:拉格朗日乘子法计算详细过程
    • 问题三:KKT条件求解过程
    • 问题四:结构风险最小化(SRM)的原理

在前面的讨论中,我们一直假定训练样本在样本空间或特征空间中是线性可分的,即存在一个超平面能将不同类的样本完全划分开.然而,在现实任务中往往 很难确定合适的核函数 使得训练样本在特征空间中线性可分;

退一步说,即便恰好找到了某个核函数使训练集在特征空间中线性可分,也很难断定这个貌似线性可分的结果不是由于过拟合所造成的.

问题一:优化目标函数是如何得到的?得到的过程是怎样的?

在这里插入图片描述

软间隔SVM是对传统的硬间隔SVM的扩展,它允许某些数据点违反最初的分类边界。这样做的目的是提高模型对噪声和异常值的鲁棒性,从而获得更好的泛化能力。在这个设置中,优化目标函数的推导过程是这样的:

  1. 软间隔引入:为了应对现实世界数据中的噪声和不完全线性可分的情况,引入软间隔的概念。在硬间隔SVM中,所有数据点都严格满足 y i ( w T x i + b ) ≥ 1 y_i (w^T x_i + b) \geq 1 yi(wTxi+b)1 的约束。在软间隔SVM中,我们允许某些点不满足这个条件,引入松弛变量 ξ i \xi_i ξi 来衡量每个数据点违背间隔的程度。

  2. 优化目标函数:考虑到间隔违规和模型的复杂度,我们希望最小化一个包含正则化项(控制模型复杂度)和损失项(衡量间隔违规)的目标函数。因此,目标函数变为最小化 1 2 ∥ w ∥ 2 \frac{1}{2} \|w\|^2 21w2(正则化项)加上 C ∑ ξ i C \sum \xi_i Cξi(损失项),其中 C C C 是一个正的正则化参数,用于平衡两者之间的重要性。

  3. 调整约束:每个数据点的原始约束 y i ( w T x i + b ) ≥ 1 y_i (w^T x_i + b) \geq 1 yi(wTxi+b)1 被调整为 y i ( w T x i + b ) ≥ 1 − ξ i y_i (w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi,同时确保松弛变量 ξ i \xi_i ξi 是非负的。

  4. 替代损失函数:松弛变量 ξ i \xi_i ξi 对应于 ℓ 0 / 1 \ell_0/1 0/1 损失函数的替代。在优化过程中,由于 ℓ 0 / 1 \ell_0/1 0/1 损失函数不是 连续的不易优化,通常会采用其他连续可微的损失函数,如 hinge 损失函数对数 损失函数

  • hinge 损失: l hinge ( z ) = max ⁡ ( 0 , 1 − z ) l_{\text{hinge}}(z) = \max(0, 1 - z) lhinge(z)=max(0,1z);
  • 指数损失(exponential loss): l exp ( z ) = exp ⁡ ( − z ) l_{\text{exp}}(z) = \exp(-z) lexp(z)=exp(z);
  • 对数损失(logistic loss): l log ( z ) = log ⁡ ( 1 + exp ⁡ ( − z ) ) l_{\text{log}}(z) = \log(1 + \exp(-z)) llog(z)=log(1+exp(z)).

三种常见替代损失函数
5. 最终优化问题:考虑到以上的点,我们的最终优化问题形式化为:
minimize w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i \text{minimize}_{w,b,\xi} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i minimizew,b,ξ21w2+Ci=1mξi
subject to y i ( w T x i + b ) ≥ 1 − ξ i , ξ i ≥ 0 , i = 1 , … , m . \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i=1, \ldots, m. subject toyi(wTxi+b)1ξi,ξi0,i=1,,m.

在这个过程中,软间隔的引入以及对目标函数的修改都是为了使模型更适应实际数据集的复杂性。正则化参数 C C C 的选择变得至关重要,因为它直接影响模型对数据中噪声的容忍程度和防止过拟合的能力。通过合理设置 C C C,模型可以在保持足够间隔的同时,允许某些数据点的违规,从而在保持模型泛化能力的前提下,最小化总体损失。

问题二:拉格朗日乘子法计算详细过程

  1. 定义问题和约束

    • 原始的SVM问题是最大化间隔,等价于最小化 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2
    • 我们要求每个数据点至少有一个距离超平面的函数间隔1。在软间隔SVM中,我们允许函数间隔小于1,但这种违规要受到惩罚。
    • 引入松弛变量 ξ i \xi_i ξi 来度量第 ( i ) 个数据点的间隔违规程度。
  2. 引入拉格朗日乘子

    • 对每个数据点 ( i ),我们有两个约束:函数间隔 y i ( w T x i + b ) ≥ 1 − ξ i y_i(w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi 和松弛变量 ξ i ≥ 0 \xi_i \geq 0 ξi0
    • 为这两个约束引入两组拉格朗日乘子 α i \alpha_i αi μ i \mu_i μi,它们必须满足 α i ≥ 0 \alpha_i \geq 0 αi0 μ i ≥ 0 \mu_i \geq 0 μi0
  3. 构建拉格朗日函数

    • 对于每个数据点 ( i ),对应的拉格朗日函数部分是 α i ( 1 − ξ i − y i ( w T x i + b ) ) \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) αi(1ξiyi(wTxi+b)) μ i ξ i \mu_i \xi_i μiξi
    • 所有数据点的拉格朗日函数相加,我们得到总拉格朗日函数
    • L ( w , b , α , ξ , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i + ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i L(w, b, \alpha, \xi, \mu) = \frac{1}{2}\|w\|^2 + C\sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i L(w,b,α,ξ,μ)=21w2+Ci=1mξi+i=1mαi(1ξiyi(wTxi+b))i=1mμiξi
    • 这里 C C C 是一个预先设定的正则化参数,它平衡了间隔的宽度和违规程度。
  4. 拉格朗日对偶问题

    • 通过对 L L L 关于 w w w b b b ξ \xi ξ 求偏导并设为0,我们可以得到 w w w b b b ξ \xi ξ 的表达式,然后将它们从拉格朗日函数中消除,得到只关于 α \alpha α μ \mu μ 的函数。
  1. 对 ( w ) 求偏导
    针对拉格朗日函数中与 w w w 相关的部分 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)),我们分别对其求偏导。
    首先,对 1 2 ∥ w ∥ 2 \frac{1}{2}\|w\|^2 21w2 求偏导: ∂ L ∂ w = w \frac{\partial L}{\partial w} = w wL=w
    然后,对 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)) 求偏导: ∂ L ∂ w = − ∑ i = 1 m α i y i x i \frac{\partial L}{\partial w} = -\sum_{i=1}^{m} \alpha_i y_i x_i wL=i=1mαiyixi
    最终,令两者相等并设为零,我们有: w − ∑ i = 1 m α i y i x i = 0 w - \sum_{i=1}^{m} \alpha_i y_i x_i = 0 wi=1mαiyixi=0
  2. 对 ( b ) 求偏导
    针对拉格朗日函数中与 ( b ) 相关的部分 ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)),我们对其求偏导。
    ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) i=1mαi(1ξiyi(wTxi+b)) 求偏导:
    ∂ L ∂ b = − ∑ i = 1 m α i y i \frac{\partial L}{\partial b} = -\sum_{i=1}^{m} \alpha_i y_i bL=i=1mαiyi
    令其等于零,得到:
    − ∑ i = 1 m α i y i = 0 -\sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0
  3. ξ \xi ξ 求偏导
    针对拉格朗日函数中与 ξ \xi ξ 相关的部分 C ∑ i = 1 m ξ i − ∑ i = 1 m μ i ξ i C\sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \mu_i \xi_i Ci=1mξii=1mμiξi,我们对其求偏导。
    C ∑ i = 1 m ξ i − ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i C\sum_{i=1}^{m} \xi_i - \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i Ci=1mξii=1mαi(1ξiyi(wTxi+b))i=1mμiξi 求偏导: ∂ L ∂ ξ i = C − α i − μ i \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i ξiL=Cαiμi
    令其等于零,得到:
    C − α i − μ i = 0 对所有的 i C - \alpha_i - \mu_i = 0 \quad \text{对所有的} i Cαiμi=0对所有的i

得到结果
w = ∑ i = 1 m α i y i x i w = \sum_{i=1}^{m} \alpha_i y_i x_i w=i=1mαiyixi
∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0
C = α i + μ i C = \alpha_i + \mu_i C=αi+μi

  1. 得到对偶优化问题
    • 消除 w w w b b b ξ \xi ξ 后,我们得到对偶问题的最大化问题,仅关于 α \alpha α
      max ⁡ α [ ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m y i y j α i α j x i T x j ] \max_{\alpha} \left[ \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j x_i^T x_j \right] αmax[i=1mαi21i,j=1myiyjαiαjxiTxj]
    • 并且要满足约束 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0 0 ≤ α i ≤ C 0 \leq \alpha_i \leq C 0αiC

根据KKT(Karush-Kuhn-Tucker)条件,对于每个数据点 x i x_i xi,如果 α i = 0 \alpha_i = 0 αi=0,那么该数据点不会对模型的决策边界造成影响;如果 0 < α i < C 0 < \alpha_i < C 0<αi<C,那么 x i x_i xi 是支持向量,并且处在边界上;如果 α i = C \alpha_i = C αi=C,那么数据点 x i x_i xi 被误分类,或者它恰好在边界的违反侧上。

  1. (\alpha_i = 0) 时:
    • 这意味着对应的数据点 x i x_i xi 不对模型的优化造成任何影响,也就是说它不是支持向量。这些点要么被正确分类远离决策边界 ,要么在软间隔SVM中,这些点虽然被误分类但由于它们的影响在优化过程中被允许忽略(即对总损失的贡献被限制在了可接受的成本 C C C 内)。
  2. (0 < \alpha_i < C) 时:
    • 这表示数据点 x i x_i xi 恰好在边界上,即它是一个 支持向量 。在SVM中,这些支持向量决定了最终的决策边界。它们恰好位于或者非常接近我们希望数据点分界的边界线。
  3. (\alpha_i = C) 时:
    • 这表示数据点 x i x_i xi 在优化过程中发挥了最大的影响,可能是因为它被误分类,或者即便它被正确分类,也位于边界内侧 紧邻决策边界 的地方。在软间隔SVM中,这代表该点被允许违反最大间隔距离,但是由于其 α i \alpha_i αi 值达到了上限 C C C,这种违反的程度受到了约束。

当我们将拉格朗日函数 L ( α , μ ) L(\alpha, \mu) L(α,μ) 展开后,我们需要消除 w w w 和 (b),以及处理约束条件:

  1. 消除 w w w 和 (b)

    我们已经有了 w = ∑ i = 1 m α i y i x i w = \sum_{i=1}^{m} \alpha_i y_i x_i w=i=1mαiyixi 和约束条件 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0 。我们代入 w w w 的表达式和约束条件:

    L ( α , μ ) = 1 2 ∥ ∑ i = 1 m α i y i x i ∥ 2 + C ∑ i = 1 m ( C − α i − μ i ) + ∑ i = 1 m α i ( 1 − ( C − α i − μ i ) − y i ( ( ∑ j = 1 m α j y j x j ) T x i ) ) − ∑ i = 1 m μ i ( C − α i − μ i ) \begin{align*} L(\alpha, \mu) &= \frac{1}{2}\left\| \sum_{i=1}^{m} \alpha_i y_i x_i \right\|^2 + C\sum_{i=1}^{m} (C - \alpha_i - \mu_i) \\ &\quad + \sum_{i=1}^{m} \alpha_i \left(1 - (C - \alpha_i - \mu_i) - y_i\left(\left(\sum_{j=1}^{m} \alpha_j y_j x_j\right)^T x_i\right)\right) \\ &\quad - \sum_{i=1}^{m} \mu_i (C - \alpha_i - \mu_i) \end{align*} L(α,μ)=21 i=1mαiyixi 2+Ci=1m(Cαiμi)+i=1mαi 1(Cαiμi)yi (j=1mαjyjxj)Txi i=1mμi(Cαiμi)

    我们可以进一步化简上述表达式。

  2. 化简 ∥ ∑ i = 1 m α i y i x i ∥ 2 \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 i=1mαiyixi2【内积展开】

    注意到 ∥ ∑ i = 1 m α i y i x i ∥ 2 \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 i=1mαiyixi2 可以写为 ( ∑ i = 1 m α i y i x i ) T ( ∑ i = 1 m α i y i x i ) (\sum_{i=1}^{m} \alpha_i y_i x_i)^T (\sum_{i=1}^{m} \alpha_i y_i x_i) (i=1mαiyixi)T(i=1mαiyixi)。展开后得到:

    ∥ ∑ i = 1 m α i y i x i ∥ 2 = ( ∑ i = 1 m α i y i x i ) T ( ∑ i = 1 m α i y i x i ) = ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i T x j \| \sum_{i=1}^{m} \alpha_i y_i x_i \|^2 = (\sum_{i=1}^{m} \alpha_i y_i x_i)^T (\sum_{i=1}^{m} \alpha_i y_i x_i) = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j i=1mαiyixi2=(i=1mαiyixi)T(i=1mαiyixi)=i=1mj=1mαiαjyiyjxiTxj

  3. 代入约束条件 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0

    由于约束条件是 ∑ i = 1 m α i y i = 0 \sum_{i=1}^{m} \alpha_i y_i = 0 i=1mαiyi=0,我们可以将 μ \mu μ 表达为 μ i = C − α i \mu_i = C - \alpha_i μi=Cαi

  4. 代入上述结果到拉格朗日函数

    代入上述结果后,我们得到:

L ( α ) = ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m α i α j y i y j x i T x j \begin{align*} L(\alpha) &= \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j \end{align*} L(α)=i=1mαi21i,j=1mαiαjyiyjxiTxj
以上步骤消除了 w w w 和 (b),并将 L ( α , μ ) L(\alpha, \mu) L(α,μ) 表达为关于 α \alpha α 的函数。

  1. 最大化 L ( α ) L(\alpha) L(α)

    我们的目标是最大化 L ( α ) L(\alpha) L(α),即求解:

max ⁡ α [ ∑ i = 1 m α i − 1 2 ∑ i , j = 1 m y i y j α i α j x i T x j ] \max_{\alpha} \left[ \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j x_i^T x_j \right] αmax[i=1mαi21i,j=1myiyjαiαjxiTxj]

并且要满足约束条件:

{ ∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2 , . . . , m \begin{cases} \sum_{i=1}^{m} \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C, \quad i = 1, 2, ..., m \end{cases} {i=1mαiyi=00αiC,i=1,2,...,m

问题三:KKT条件求解过程

和前面相比,两者唯一差别就在约束条件不同;
带有软间隔的KKT条件
了解KKT条件的推导过程首先要理解拉格朗日乘子法在处理优化问题时如何使用。在软间隔支持向量机中,我们希望最小化以下拉格朗日函数:

L ( w , b , α , ξ , μ ) = 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i + ∑ i = 1 m α i ( 1 − ξ i − y i ( w T x i + b ) ) − ∑ i = 1 m μ i ξ i L(w, b, \alpha, \xi, \mu) = \frac{1}{2}\|w\|^2 + C\sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i (1 - \xi_i - y_i(w^T x_i + b)) - \sum_{i=1}^{m} \mu_i \xi_i L(w,b,α,ξ,μ)=21w2+Ci=1mξi+i=1mαi(1ξiyi(wTxi+b))i=1mμiξi

其中, α \alpha α μ \mu μ 是拉格朗日乘子, ξ \xi ξ 是松弛变量。

这个函数结合了目标函数和对每个样本 x i x_i xi 的约束,其中 y i ( w T x i + b ) ≥ 1 − ξ i y_i(w^T x_i + b) \geq 1 - \xi_i yi(wTxi+b)1ξi。由于 ξ i \xi_i ξi 允许一定的分类违规,我们加入正则化参数 C C C 以限制这种违规。

KKT条件是最优解必须满足的一组条件,它们来自拉格朗日函数 L L L 关于每个变量的偏导数等于零的必要条件。下面是KKT条件:

  1. α i ≥ 0 \alpha_i \geq 0 αi0 μ i ≥ 0 \mu_i \geq 0 μi0:这确保了拉格朗日乘子是非负的。在优化问题中,拉格朗日乘子用来 加权约束条件 ,而这个权重不能是负的。
  2. y i f ( x i ) − 1 + ξ i ≥ 0 y_i f(x_i) - 1 + \xi_i \geq 0 yif(xi)1+ξi0 :这是原始问题的约束,表示每个数据点的函数间隔至少为1,满足 1 − ξ i 1 - \xi_i 1ξi(如果数据点被正确分类且在正确的间隔边界上或者超出间隔边界)。如果 ξ i > 0 \xi_i > 0 ξi>0,则该数据点有分类违规
  3. α i ( y i f ( x i ) − 1 + ξ i ) = 0 \alpha_i(y_i f(x_i) - 1 + \xi_i) = 0 αi(yif(xi)1+ξi)=0互补松弛性条件。如果 α i > 0 \alpha_i > 0 αi>0,则对应的 y i f ( x i ) − 1 + ξ i y_i f(x_i) - 1 + \xi_i yif(xi)1+ξi 必须等于0。这意味着对于非零 α i \alpha_i αi 的数据点,它们要么恰好在决策边界上,要么就是被 错误分类 的点。
  4. ξ i ≥ 0 \xi_i \geq 0 ξi0松弛变量的非负性,允许某些数据点违背硬间隔条件。
  5. μ i ξ i = 0 \mu_i \xi_i = 0 μiξi=0:这是对 μ \mu μ互补松弛性条件,表明如果松弛变量 ξ i > 0 \xi_i > 0 ξi>0,即有分类违规,那么对应的 μ i \mu_i μi 必须是 0,反之亦然。

通过拉格朗日函数的偏导数等于零的条件和这些KKT条件,我们能够定义出最优化问题的对偶形式,这在数值上往往更易于求解。对偶问题通常涉及 仅有 α \alpha α最大化问题 ,而不直接求解 w w w b b b,这简化了问题的复杂度,特别是当用核技巧将其扩展到高维空间时。

在实际算法实现中,如SMO算法,这种对偶形式是解决SVM最优化问题的关键。

问题四:结构风险最小化(SRM)的原理

结构风险最小化(SRM)的原理,它是支持向量机(SVM)理论的一个核心概念。结构风险最小化致力于在保证模型复杂度的同时 最小化训练误差 ,以达到良好的泛化效果。文中提到了经验风险(即模型在训练集上的误差)和模型的复杂度两个部分。具体来说,它通过一个优化问题来平衡这两者:

  • 经验风险:是模型在训练数据上的 损失函数值的总和
  • 正则化项:是用于控制 模型复杂度 的项,通常是模型参数的某种形式(如权重向量的范数)。

优化目标是最小化这两个量的组合,通常表示为:

min ⁡ f Ω ( f ) + C ∑ i = 1 m L ( f ( x i ) , y i ) \min_f \quad \Omega(f) + C \sum_{i=1}^{m} L(f(x_i), y_i) fminΩ(f)+Ci=1mL(f(xi),yi)

这里, Ω ( f ) \Omega(f) Ω(f) 是正则化项, L ( f ( x i ) , y i ) L(f(x_i), y_i) L(f(xi),yi) 是损失函数, C C C 是控制两者权重的正则化参数。

了解SRM的概念可以帮助你更好地理解SVM模型的目标和设计背后的 动机 ,但如果你只是想实现算法而不关心其理论基础,你可以选择不深入这部分内容。然而,如果你打算深入理解SVM的工作原理或者进行算法的改进,那么对SRM的理解是很重要的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/589810.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

批量视频剪辑新选择:一键式按照指定秒数分割视频并轻松提取视频中的音频,让视频处理更高效!

是否经常为大量的视频剪辑工作感到头疼&#xff1f;还在一个个手动分割、提取音频吗&#xff1f;现在&#xff0c;我们为你带来了一款全新的视频批量剪辑神器&#xff0c;让你轻松应对各种视频处理需求&#xff01; 首先&#xff0c;进入媒体梦工厂的主页面&#xff0c;并在板…

机器学习之基于Tensorflow(LSTM)进行多变量时间序列预测股价

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 项目简介&#xff1a;机器学习之基于TensorFlow&#xff08;LSTM&#xff09;进行多变量时间序列预测股价 一、项目…

【Java从入门到精通】Java 正则表达式

目录 正则表达式实例 &#x1f349;java.util.regex 包 &#x1f349;实例 &#x1f349;捕获组 &#x1f349;实例 &#x1f349;RegexMatches.java 文件代码&#xff1a; &#x1f349;正则表达式语法 &#x1f349;Matcher 类的方法 &#x1f349;索引方法 &#…

【Qt QML】QLibrary加载共享库中的类

QLibrary是一个用于加载动态链接库&#xff08;或称为共享库&#xff09;的类。它提供了一种独立于平台的方式来访问库中的功能。 在QLibrary中&#xff0c;可以通过构造函数或setFileName()方法设置要加载的库文件名。当加载库文件时&#xff0c;QLibrary会搜索所有平台特定的…

消失的VCC和VEE,取而代之的VDD和VSS

一直以来&#xff0c;这些电源电压&#xff08;Vdd 和 Vss&#xff09;或&#xff08;Vcc 和 Vee&#xff09;的命名都有点耐人寻味&#xff0c;甚至令人困惑。但为什么呢&#xff1f; It has always been a bit intriguing and even confusing the nomenclature of these powe…

Unreal 编辑器工具 批量重命名资源

右键 - Editor Utilities - Editor Utility Blueprint&#xff0c;基类选择 Asset Action Utility 在类默认值内&#xff0c;可以添加筛选器&#xff0c;筛选指定的类型 然后新建一个函数&#xff0c;加上4个输入&#xff1a;ReplaceFrom&#xff0c;ReplaceTo&#xff0c;Add…

多国语言免费在线客服系统源码,网站在线客服系统,网页在线客服软件在线聊天通讯平台

详情介绍 多国语言免费在线客服系统源码,网站在线客服系统,网页在线客服软件在线聊天通讯平台 新款在线客服系统全开源无加密:多商户、国际化多语言、智能机器人、自动回复、语音聊天、 文件发送、系统强力防黑加固、不限坐席、国际外贸、超多功能 支持手机移动端和PC网页…

安装ESXI 7.0的系统盘小于120G,安装后无本地datastore存储的处理办法

1、应用场景 在全新安装ESXI 7.0后&#xff0c;系统将会划分120G空间作为虚拟闪存&#xff0c;在大容量硬盘的设备中&#xff0c;120G无足轻重&#xff0c;但是当ESXI系统盘容量非常小的时候会导致无可用本地存储空间。 我这里的情况就是服务器里内置了2个120G的硬盘&#xff…

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

WPF之可翻转面板

1&#xff0c;创建翻转面板的资源字典&#xff1a;FlippPanel.xaml。 无外观控件同样必须给样式指定类型&#xff08; <ControlTemplate TargetType"ss:FlipPanel">&#xff09;&#xff0c;相关详情参考&#xff1a;WPF之创建无外观控件-CSDN博客&#xff09…

【备忘】Move-ADObject跨子域迁移用户

【背景】由于工作调整&#xff0c;用户需要从A国迁移到B国工作。 - 站在 IT角度&#xff0c;A、B国都是全球根域下的子域&#xff0c;分别为A.domain.com, B.Domain.com。两者是平级的&#xff0c;即使把用户保留的A域里&#xff0c;其实也照常使用。 - 站在HR角度&#xff0…

tkinter 桌面GUI简单计算功能 开发文档

Tkinter是Python的标准GUI&#xff08;图形用户界面&#xff09;工具包&#xff0c;用于创建和管理图形用户界面应用程序。Tkinter提供了一组丰富的组件和工具&#xff0c;使开发者能够轻松地构建具有按钮、标签、文本框、菜单等各种交互元素的用户界面。通过Tkinter&#xff0…

<2024年5月软考高项极限冲刺>《2 考试知识块》

&#x1fab8;&#x1fab8;把你所学串起来&#xff0c;欢迎订阅。&#x1fab8;&#x1fab8; 每章附独家脑图&#xff0c;原图。 冲刺 冲刺 冲刺 1 看下面的图&#xff0c;让你知道你要学习的全部知识是什么 2 章节解析 我们考试的重点是项目管理知识&#xff0c;但是因…

【深度学习基础(2)】深度学习之前:机器学习简史

文章目录 一. 深度学习的起源1. 概率建模--机器学习分类器2. 早期神经网络--反向传播算法的转折3. 核方法 -- 忽略神经网络4. 决策树、随机森林和梯度提升机5. 神经网络替代svm与决策树 二. 深度学习与机器学习有何不同 可以这样说&#xff0c;当前工业界所使用的大部分机器学习…

自适应医疗决策框架 MDAgents:问题复杂度评估 + 医疗决策 + 多智能体协作

自适应医疗决策框架 MDAgents&#xff1a;问题复杂度评估 医疗决策 多智能体协作 提出背景MDAgents 拆解解法&#xff1a;MDAgents框架处理医疗问题3.1 查询复杂性评估例子&#xff1a;糖尿病患者的医疗查询 3.2 专家招募3.3 医疗协作与改良3.4 决策制定 分阶段决策1. 问题复…

优质短视频内容进阶SOP课

本课程致力于提升短视频内容创作标准化操作流程&#xff08;SOP&#xff09;。学员将学习视频策划、拍摄技巧、剪辑方法等&#xff0c;打造高质量短视频内容。通过实例分析和实践演练&#xff0c;学员将掌握优质内容制作的关键步骤&#xff0c;提升影响力和吸引力&#xff0c;成…

机器人系统ros2-开发实践04-ROS 2 启动文件管理大型项目的最佳实践

机器人上的大型应用通常涉及多个互连的节点&#xff0c;每个节点可以有许多参数。海龟模拟器中模拟多只海龟就是一个很好的例子。海龟模拟由多个海龟节点、世界配置以及 TF 广播器和监听器节点组成。在所有节点之间&#xff0c;存在大量影响这些节点的行为和外观的 ROS 参数。 …

浏览器安装路径位置的查看、指定网址快捷方式的创建

浏览器安装路径位置的查看、指定网址快捷方式的创建 浏览器安装路径位置的查看 法一、属性查看法 右键点击浏览器的桌面图标&#xff0c;选择“属性”&#xff0c;“快捷方式”页中的“目标”框中可见. 以Microsoft Edge浏览器为例&#xff0c;参见下图&#xff1a; 法二、地…

基于Spring Boot的心灵治愈交流平台设计与实现

基于Spring Boot的心灵治愈交流平台设计与实现 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 系统功能界面图&#xff0c;在系统首页可以查看首页…

远程桌面报错:【出现验证错误。要求的函数不受支持】

WinR 输入【gpedit.msc】回车 依次打开 计算机配置----管理模板-----系统-----凭据分配---加密数据库修正 选择【已启用】&#xff0c;下拉菜单选择【易受攻击】