踏上R语言之旅:解锁数据世界的神秘密码(五)

线性与非线性模型及R使用


文章目录

  • 线性与非线性模型及R使用
  • 一、数据的分类与模型选择
    • 1.变量的取值类型
  • 二、广义线性模型
    • 广义线性模型概述
    • Logistic模型
  • 总结


一、数据的分类与模型选择

1.变量的取值类型

因变量记为y,解释变量记为x1,x2,…
因变量y一般有如下五种取值方式:
(1)y为连续变量,如心脏面积、肺活量、血红蛋白量等。
(2)y为“0-1”变量或称二分类变量,如实验“成功”、“失败”,“有效”、“无效”,治疗结果“存活”、“死亡”等。
(3)y为有序变量(等级变量),如治疗结果“治愈”、“显效”、“无效”等。
(4)y为多分类变量,如脑肿瘤分良性、恶性、转移瘤,小儿肺炎分结核性、化脓性和细菌性等。
(5)y为连续伴有删失变量,如某病治疗后存活时间可能有失访删失、终检删失和随机删失等。

解释变量x一般有如下三种取值方式:
(1)x为连续变量,如身高、体重等,一般称x为自变量或协变量。
(2)x为分类变量,如性别:男、女,居住地:城市、村镇、农村等,称x为因素。
(3)x为等级变量,如吸烟量:不吸烟、0–10支、10~20支、20支以上等,x可通过评分转化为协变量,也可以看成因素,等级数看成是因素的水平数。


二、广义线性模型

广义线性模型概述

因变量为非正态分布线性模型称为广义线性模型
在这里插入图片描述
在R语言中,正态(高斯)分布族的广义线性模型事实上同线性模型是相同的,即
gm <-glm(formula,family=gaussian,data)
同线性模型
fm <-Im(formula,data)
得到的结论是一致的,当然,其效率会差很多。
在这里插入图片描述

Logistic模型

在这里插入图片描述
实例分析:

对45名驾驶员的调查结果

> nk=read.table("clipboard",header=T)
> logit.glm<-glm(y~x1+x2+x3,family=binomial,data=nk)
> summary(logit.glm)#Logistic回归模型结果

Call:
glm(formula = y ~ x1 + x2 + x3, family = binomial, data = nk)

Coefficients
             Estimate Std. Error z value Pr(>|z|)  
(Intercept)  0.597610   0.894831   0.668   0.5042  
x1          -1.496084   0.704861  -2.123   0.0338 *
x2          -0.001595   0.016758  -0.095   0.9242  
x3           0.315865   0.701093   0.451   0.6523  
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 62.183  on 44  degrees of freedom
Residual deviance: 57.026  on 41  degrees of freedom
AIC: 65.026

Number of Fisher Scoring iterations: 4

在这里插入图片描述

> logit.step<-step(logit.glm,direction="both")#逐步筛选法变量选择
Start:  AIC=65.03
y ~ x1 + x2 + x3

       Df Deviance    AIC
- x2    1   57.035 63.035
- x3    1   57.232 63.232
<none>      57.026 65.026
- x1    1   61.936 67.936

Step:  AIC=63.03
y ~ x1 + x3

       Df Deviance    AIC
- x3    1   57.241 61.241
<none>      57.035 63.035
+ x2    1   57.026 65.026
- x1    1   61.991 65.991

Step:  AIC=61.24
y ~ x1

       Df Deviance    AIC
<none>      57.241 61.241
+ x3    1   57.035 63.035
+ x2    1   57.232 63.232
- x1    1   62.183 64.183
> summary(logit.step)#逐步筛选法变量选择结果

Call:
glm(formula = y ~ x1, family = binomial, data = nk)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)   0.6190     0.4688   1.320   0.1867  
x1           -1.3728     0.6353  -2.161   0.0307 *
---
Signif. codes:  0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 62.183  on 44  degrees of freedom
Residual deviance: 57.241  on 43  degrees of freedom
AIC: 61.241

Number of Fisher Scoring iterations: 4

在这里插入图片描述

> pre1<-predict(logit.step,data.frame(x1=1))#预测视力正常司机Logistic回归结果
> p2<-exp(pre2)/(1+exp(pre2))#预测视力有问题的司机发生事故概率
错误: 找不到对象'pre2'
> p1<-exp(pre1)/(1+exp(pre1))#预测视力正常司机发生事故概率
> pre2<-predict(logit.step,data.frame(x1=0))#预测视力有问题的司机Logistic回归结果
> p2<-exp(pre2)/(1+exp(pre2))#预测视力有问题的司机发生事故概率
> c(p1,p2)#结果显示
   1    1 
0.32 0.65 

可见,P1=0.32,P2=0.65,说明视力有问题的司机发生交通事故的概率是视力正常的司机的两倍以上。


总结

本小节主要学习了数据的分类与模型选择以及广义线性模型,尤其是 Logistic模型的方法介绍和实际应用操作,继续加油!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587707.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

77、贪心-买卖股票的最佳时机

思路 具体会导致全局最优&#xff0c;这里就可以使用贪心算法。方式如下&#xff1a; 遍历每一位元素找出当前元素最佳卖出是收益是多少。然后依次获取最大值&#xff0c;就是全局最大值。 这里可以做一个辅助数组&#xff1a;右侧最大数组&#xff0c;求右侧最大数组就要从…

ChatGPT4.0知识问答、DALL-E生成AI图片、Code Copilot辅助编程,打开新世界的大门

目录 1、DALL-E 文字转图片 在线AI修改2、Write For Me3、Code Copilot 目前最强的AI编程大模型4、Diagrams: Show Me5、Instant Website [Multipage] 网站合成神器6、AskYourPDF Research Assistant 无限PDF7、Diagrams & Data: Research, Analyze, Visualize 精读Excel …

WPF之border标签边框控件、设置弧度、图片

border标签在WPF中承担着边框的角色又称之为边框标签&#xff0c;使用嵌套的方法去给一些标签添加边框&#xff0c;border标签包裹目标标签(border不能有多个子元素)。一般在给标签添加弧度时可以使用border。 常用属性 CornerRadius边框拐角的弧度&#xff0c;当宽高是一样的…

设计模式之监听器模式ListenerPattern(三)

一、介绍 监听器模式是一种软件设计模式&#xff0c;在对象的状态发生改变时&#xff0c;允许依赖它的其他对象获得通知。在Java中&#xff0c;可以使用接口和回调机制来实现监听器模式。 二、代码实例 1、事件Event类 package com.xu.demo.listener;// 事件类 public class…

多目标应用:MSSA多目标樽海鞘优化算法求解无人机三维路径规划(MATLAB代码)

一、无人机多目标优化模型 无人机三维路径规划是无人机在执行任务过程中的非常关键的环节&#xff0c;无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上&#xff0c;计算出发点和目标点之间的最佳航路。 1.1路径成本 无人机三维路径规划的首要目标是寻找…

Maven3.9.6下载安装教程

(/≧▽≦)/~┴┴ 嗨~我叫小奥 ✨✨✨ &#x1f440;&#x1f440;&#x1f440; 个人博客&#xff1a;小奥的博客 &#x1f44d;&#x1f44d;&#x1f44d;&#xff1a;个人CSDN ⭐️⭐️⭐️&#xff1a;Github传送门 &#x1f379; 本人24应届生一枚&#xff0c;技术和水平有…

快速了解Django:核心概念解析与实践指南

title: 快速了解Django&#xff1a;核心概念解析与实践指南 date: 2024/5/1 20:31:41 updated: 2024/5/1 20:31:41 categories: 后端开发 tags: Django核心路由系统视图系统ORM管理中间件Web框架登录装饰器 第一章&#xff1a;Django简介 背景和发展历程&#xff1a; Djan…

B站广告投放开户的基本费用?

哔哩哔哩&#xff08;B站&#xff09;作为国内领先的年轻人文化社区与视频平台&#xff0c;凭借其独特的文化氛围和庞大的Z世代用户基础&#xff0c;成为品牌营销不可忽视的战场。对于意欲在这片沃土上播种品牌影响力的商家而言&#xff0c;深入理解B站广告投放的开户流程、费用…

cx_Oracle.DatabaseError: DPI-1047: Cannot locate a 64-bit Oracle Client library

pip install cx_Oracleimport cx_Oracle 再导入该模块进行数据库连接的时候报错 这个错误表明您的Python环境是64位的&#xff0c;但是您尝试使用的Oracle客户端库&#xff08;oci.dll&#xff09;是32位的 根据官方给出的文档进行查看 cx_Oracle 8 Installation — cx_Ora…

正则化手册:探索改进机器学习模型功能的实用技巧

书籍&#xff1a;The Regularization Cookbook&#xff1a;Explore practical recipes to improve the functionality of your ML models 作者&#xff1a;Vincent Vandenbussche 出版&#xff1a;Packt Publishing 书籍下载-《正则化手册&#xff1a;探索改进机器学习模型功…

密码学python库PBC安装使用

初始化 使用环境云服务器&#xff08;移动云可以免费使用一个月&#xff09; 选择ubuntu18.04-64位 第一次进入linux命令行之后是没有界面显示的&#xff0c;需要在命令行下载。 这里按照其他云平台操作即可&#xff1a;Ubuntu18.04 首次使用配置教程(图形界面安装) 记录好登录…

使用Python及R语言绘制简易数据分析报告

Pytohn实现 在python中有很多包可以实现绘制数据分析报告的功能&#xff0c;推荐两个较为方便的包&#xff1a;pandas-profiling 和 sweetviz 。 使用 pandas-profiling 包&#xff08;功能全面&#xff09; 这个包的个别依赖包与机器学习的 sklearn 包的依赖包存在版本冲突&a…

RAG 的是与非、Rewrite 和 Rerank

有时候,我觉得人类还真是种擅长画地为牢的动物,因为突然发现,当人们以文化/理念的名义形成团体/圈子的时候,其结局都不可避免地走向了筛选和区分的道路。或许,大家都不约而同地笃信,在成年人的世界里,那条不成文的社交潜规则——“只筛选不教育,只选择不改变”。与千百…

2024五一数学建模C题Python代码+结果表数据教学

2024五一数学建模竞赛&#xff08;五一赛&#xff09;C题保姆级分析完整思路代码数据教学 C题 煤矿深部开采冲击地压危险预测 第一问 导入数据 以下仅展示部分&#xff0c;完整版看文末的文章 import numpy as np import pandas as pd import matplotlib.pyplot as plt imp…

【报错处理】ib_write_bw执行遇到Found Incompatibility issue with GID types.原因与解决办法

文章目录 拓扑现象根因解决办法解决后效果 拓扑 #mermaid-svg-zheSkw17IeCpjnVA {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-zheSkw17IeCpjnVA .error-icon{fill:#552222;}#mermaid-svg-zheSkw17IeCpjnVA .error…

PotatoPie 4.0 实验教程(34) —— FPGA实现摄像头图像二值化腐蚀效果

链接直达 https://item.taobao.com/item.htm?ftt&id776516984361 图像二值化腐蚀处理有什么作用&#xff1f; 图像二值化腐蚀处理在图像处理中起到了以下作用&#xff1a; 物体分割与提取&#xff1a;在图像二值化之后&#xff0c;通过腐蚀操作可以消除噪声、连接相邻的…

搜索Mysql的JSON字段的值

我们在查询mysql数据时&#xff0c;查询某个字段的数剧是我们经常接触的&#xff0c;直接使用sql语句或者更方便的直接使用数据库的orm语句查询。但是如果需要查询某个json字段里面的某些数据&#xff0c;orm模型可能都无法达到效果&#xff0c;还不如直接使用sql语句进行查询来…

国产化改造之容器迁移指导(未完)

一、背景 信创即信息技术应用创新的简称,涵盖了国产软件、国产芯片以及云计算等各个方向,也可以理解为常说的“ZZKK(自主可控)”, ZZKK是指对国内企事业单位应用系统中关键软硬件部件的安全性、可靠性、性能稳定性、安全接入等方面进行评估和测试的过程。信创的发展核心就…

(四)小程序学习笔记——自定义组件

1、组件注册——usingComponents &#xff08;1&#xff09;全局注册&#xff1a;在app.json文件中配置 usingComponents进行注册&#xff0c;注册后可以在任意页面使用。 &#xff08;2&#xff09;局部注册&#xff0c;在页面的json文件中配置suingComponents进行注册&#…

探索APP内测分发的全过程(APP开发)

什么是APP内测分发探索APP内测分发的全过程&#xff1f; APP内测分发是在应用程序开发过程中探索APP内测分发的全过程&#xff0c;开发者将应用程序的测试版或预发布版分发给特定用户进行测试、反馈和评估的一种方式。这是一个非常重要的环节&#xff0c;可以有效地提高应用的…