人工智能|深度学习——多模态条件机制 Cross Attention 原理及实现

一、引入

虽然之前写过 Attention 的文章,但现在回头看之前写的一些文章,感觉都好啰嗦,正好下一篇要写的 Stable Diffusion 中有 cross-attention,索性就再单拎出来简单说一下 Attention 吧,那么这篇文章的作用有两个:第一是为 Stable Diffusion 做补充,第二是为后续的 Vision Transformer 和 Swin Transformer 做铺垫。

为了保证篇幅开头的完整性,还得啰嗦一下 Transformer,它最开始提出是针对nlp领域的,在此之前除了seq2seq这种encoder-decoder架构,大家主要还是用的rnn、lstm这种时序网络,像rnn系列网络它是有问题的,首先就是它记忆的长度是有限的,其次是无法并行化计算,也就是必须要先计算xt时刻的数据才能计算时刻xt+1,这就导致效率低下。针对这些问题,Google就提出了 Transformer,在 Transformer 中有两个非常重要的模块:Self Attention 和 Multi-Head Attention,本文会先介绍 Attention 的基本思想,然后再对 Self Attention 和 Multi-Head Attention 进行概述,最后再讲本文的主题 Cross Attention,其实 Cross Attention 非常简单,不要被它的名字吓到,一定要理解透彻前面的 Multi-Head Attention。

二、Attention 思想

注意力机制的核心目标是从众多信息中选择出对当前任务目标更关键的信息,将注意力放在上面。其本质思想就是【从大量信息中】【有选择的筛选出】【少量重要信息】并将注意力【聚焦到这些重要信息上】,【忽略大多不重要的信息】。聚焦的过程体现在【权重系数】的计算上,权重越大越聚焦于其对应的value值上。即权重代表了信息的重要性,而value是其对应的信息。

  • Q是Query,是输入的信息,即当前任务的目标,用于和key进行匹配;

  • K和V分别是Key和Value,一般是相同的数据,比如原始文本经过Embedding后的表征;

  • 通过计算Q与K之间的相关性,得到权重a,再将权重a进行类似于softmax的归一化操作,表示不同的key对于Q的重要程度,或者说权重a越大,我们就会把更多的注意力放到其对应的value上;

  • 用权重a再与对应的Value相乘,意思是我们从Value中提取到的重要信息,或者说是对Q有用的信息;

  • 加权后的结果再求和就得到了针对Query的Attention输出,用新的输出代替原来的Q参与之后的一系列运算。

我们以机器翻译为例进一步加深理解,假设有文本“汤姆追逐杰瑞”,方便起见我们规定词库单词就为tom、chase、jerry,当我们对“汤姆”进行翻译的时候,套用上述 Attention 机制:

三、Self Attention

我们可以观察上面的传统 Attention 机制,我们可以发现每个词只表示自身的含义,不包含上下文的语义信息。而 Self Attention 则顾名思义,它指的是关注输入序列元素之间的关系,也就是说每个元素都有自己的Q、K、V,经过 Self Attention 对词向量进行重构后,使得词向量即包含自己的信息,又综合考虑了上下文的语义信息,如下图所示:

四、Multi-Head Attention

图片

在理解了 Self Attention 之后,Multi-Head Attention 就很容易了,它相当于 h 个不同的 Self Attention 的集成,说白了就是对其的堆叠。

Multi-Head Attention的优点:

  • 多头保证了我们可以注意到不同子空间的信息,捕捉到更加丰富的特征信息。

  • 能够捕捉到特征的多样性,说白了就是因为有多头,可以从多个角度去理解内容。

    • 换句话说,经过注意力之后的矩阵会有自己理解的语义信息,那么多个头就会有多个不同的理解。

  • 通过注意力可以充分的解读上下文的语义信息,能够充分的带入到一个场景中做理解。

五、Padding Mask

在做注意力的时候,我们还需要进行 padding mask 来消除 padding 部分的影响,因为有softmax的存在,padding项的注意力也会作为x^{i}进行缩放,首先对padding项添加注意力本身就不合理,其次它作为x^{i}就相当于也会产生权重,所以要消除 padding 带来的影响。

具体而言,我们会在输入序列中定位到 padding 的位置,然后标记为1,其余标记为0,然后构建一个与 attention 矩阵同维度的mask矩阵,其中填充位置对应元素为1,其它位置对应元素为0,关键代码如下:

# 构建padding mask矩阵
pad_mask = input_ids.eq(0) # 逻辑矩阵pad_mask:将填充位置标记为True,其他位置标记为False [batch_size, seq_len]
# 增加维度,和 QK^T 后的att权重维度等同 [batch_szie, seq_len, seq_len]
pad_mask = pad_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len) 

# (batch_size, num_heads, seq_len, seq_len)
att_weights = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # 点积操作

# 因为是多头,所以mask矩阵维度要扩充到4维  [batch_size, seq_len, seq_len] -> [batch_size, nums_head, seq_len, seq_len]
pad_mask = pad_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)
att_weights.masked_fill_(pad_mask, float('-inf')) # 将填充位置对应的元素设置为负无穷
att_weights = torch.softmax(att_weights, dim=-1) # 在最后一个维度上进行softmax

context = torch.matmul(att_weights, V) # (batch_size, num_heads, seq_len, emb_dim)

六、Cross Attention

理解上面了,cross-attention就更简单了,它用于处理两个不同模态序列之间的关联,在多模态场景中用于将文本和图像等不同类型的数据进行交互处理:

七、代码实现

7.1 self-attention

class SelfAttention(nn.Module):
    def __init__(self, emb_dim):
        super(SelfAttention, self).__init__()
        self.emb_dim = emb_dim

        self.Wq = nn.Linear(emb_dim, emb_dim, bias=False)
        self.Wk = nn.Linear(emb_dim, emb_dim, bias=False)
        self.Wv = nn.Linear(emb_dim, emb_dim, bias=False)

        self.fc = nn.Linear(emb_dim, emb_dim)

    def forward(self, x, pad_mask=None):
        # [batch_szie, seq_len, emb_dim] = [3, 5, 512]

        Q = self.Wq(x)
        K = self.Wk(x)
        V = self.Wv(x)

        att_weights = torch.bmm(Q, K.transpose(1, 2))   # [batch_szie, seq_len, seq_len] = [3, 5, 5]
        att_weights = att_weights / math.sqrt(self.emb_dim)

        if pad_mask is not None:
            att_weights = att_weights.masked_fill(pad_mask, -1e9)

        att_weights = F.softmax(att_weights, dim=-1)
        output = torch.bmm(att_weights, V)   # [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        output = self.fc(output)

        return output, att_weights

7.2 Multi-Head Attention

class MultiHeadAttention(nn.Module):
    def __init__(self, emb_dim, num_heads, att_dropout=0.0):
        super(MultiHeadAttention, self).__init__()
        self.emb_dim = emb_dim
        self.num_heads = num_heads
        self.att_dropout = att_dropout

        assert emb_dim % num_heads == 0, "emb_dim must be divisible by num_heads"
        self.depth = emb_dim // num_heads

        self.Wq = nn.Linear(emb_dim, emb_dim, bias=False)
        self.Wk = nn.Linear(emb_dim, emb_dim, bias=False)
        self.Wv = nn.Linear(emb_dim, emb_dim, bias=False)

        self.fc = nn.Linear(emb_dim, emb_dim)

    def forward(self, x, pad_mask=None):
        # [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        batch_size = x.size(0)

        # [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        Q = self.Wq(x)
        K = self.Wk(x)
        V = self.Wv(x)

        # 分头 [batch_szie, num_heads, seq_len, depth] = [3, 8, 5, 512/8=64]
        Q = Q.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)
        K = K.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)
        V = V.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)

        # [batch_szie, num_heads, seq_len, seq_len] = [3, 8, 5, 5]
        att_weights = torch.matmul(Q, K.transpose(-2, -1))
        att_weights = att_weights / math.sqrt(self.depth)

        if pad_mask is not None:
            # 因为是多头,所以mask矩阵维度要扩充到4维  [batch_size, seq_len, seq_len] -> [batch_size, nums_head, seq_len, seq_len]
            pad_mask = pad_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)
            att_weights = att_weights.masked_fill(pad_mask, -1e9)

        att_weights = F.softmax(att_weights, dim=-1)

        # 自己的多头注意力效果没有torch的好,我猜是因为它的dropout给了att权重,而不是fc
        if self.att_dropout > 0.0:
            att_weights = F.dropout(att_weights, p=self.att_dropout)

        # [batch_szie, num_heads, seq_len, depth] = [3, 8, 5, 64]
        output = torch.matmul(att_weights, V)

        # 不同头的结果拼接 [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.emb_dim)

        output = self.fc(output)

        return output, att_weights

7.3 Cross_MultiAttention

class Cross_MultiAttention(nn.Module):
    def __init__(self, in_channels, emb_dim, num_heads, att_dropout=0.0, aropout=0.0):
        super(Cross_MultiAttention, self).__init__()
        self.emb_dim = emb_dim
        self.num_heads = num_heads
        self.scale = emb_dim ** -0.5

        assert emb_dim % num_heads == 0, "emb_dim must be divisible by num_heads"
        self.depth = emb_dim // num_heads


        self.proj_in = nn.Conv2d(in_channels, emb_dim, kernel_size=1, stride=1, padding=0)

        self.Wq = nn.Linear(emb_dim, emb_dim)
        self.Wk = nn.Linear(emb_dim, emb_dim)
        self.Wv = nn.Linear(emb_dim, emb_dim)

        self.proj_out = nn.Conv2d(emb_dim, in_channels, kernel_size=1, stride=1, padding=0)


    def forward(self, x, context, pad_mask=None):
        '''

        :param x: [batch_size, c, h, w]
        :param context: [batch_szie, seq_len, emb_dim]
        :param pad_mask: [batch_size, seq_len, seq_len]
        :return:
        '''
        b, c, h, w = x.shape

        x = self.proj_in(x)   # [batch_size, c, h, w] = [3, 512, 512, 512]
        x = rearrange(x, 'b c h w -> b (h w) c')   # [batch_size, h*w, c] = [3, 262144, 512]

        Q = self.Wq(x)  # [batch_size, h*w, emb_dim] = [3, 262144, 512]
        K = self.Wk(context)  # [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        V = self.Wv(context)

        Q = Q.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)  # [batch_size, num_heads, h*w, depth]
        K = K.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)  # [batch_size, num_heads, seq_len, depth]
        V = V.view(batch_size, -1, self.num_heads, self.depth).transpose(1, 2)

        # [batch_size, num_heads, h*w, seq_len]
        att_weights = torch.einsum('bnid,bnjd -> bnij', Q, K)
        att_weights = att_weights * self.scale

        if pad_mask is not None:
            # 因为是多头,所以mask矩阵维度要扩充到4维  [batch_size, h*w, seq_len] -> [batch_size, nums_head, h*w, seq_len]
            pad_mask = pad_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1)
            att_weights = att_weights.masked_fill(pad_mask, -1e9)

        att_weights = F.softmax(att_weights, dim=-1)
        out = torch.einsum('bnij, bnjd -> bnid', att_weights, V)
        out = out.transpose(1, 2).contiguous().view(batch_size, -1, self.emb_dim)   # [batch_size, h*w, emb_dim]

        print(out.shape)

        out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w)   # [batch_size, c, h, w]
        out = self.proj_out(out)   # [batch_size, c, h, w]

        return out, att_weights

7.4 Cross Attention

class CrossAttention(nn.Module):
    def __init__(self, in_channels, emb_dim, att_dropout=0.0, aropout=0.0):
        super(CrossAttention, self).__init__()
        self.emb_dim = emb_dim
        self.scale = emb_dim ** -0.5

        self.proj_in = nn.Conv2d(in_channels, emb_dim, kernel_size=1, stride=1, padding=0)

        self.Wq = nn.Linear(emb_dim, emb_dim)
        self.Wk = nn.Linear(emb_dim, emb_dim)
        self.Wv = nn.Linear(emb_dim, emb_dim)

        self.proj_out = nn.Conv2d(emb_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, context, pad_mask=None):
        '''

        :param x: [batch_size, c, h, w]
        :param context: [batch_szie, seq_len, emb_dim]
        :param pad_mask: [batch_size, seq_len, seq_len]
        :return:
        '''
        b, c, h, w = x.shape

        x = self.proj_in(x)   # [batch_size, c, h, w] = [3, 512, 512, 512]
        x = rearrange(x, 'b c h w -> b (h w) c')   # [batch_size, h*w, c] = [3, 262144, 512]

        Q = self.Wq(x)  # [batch_size, h*w, emb_dim] = [3, 262144, 512]
        K = self.Wk(context)  # [batch_szie, seq_len, emb_dim] = [3, 5, 512]
        V = self.Wv(context)

        # [batch_size, h*w, seq_len]
        att_weights = torch.einsum('bid,bjd -> bij', Q, K)
        att_weights = att_weights * self.scale

        if pad_mask is not None:
            # [batch_size, h*w, seq_len]
            att_weights = att_weights.masked_fill(pad_mask, -1e9)

        att_weights = F.softmax(att_weights, dim=-1)
        out = torch.einsum('bij, bjd -> bid', att_weights, V)   # [batch_size, h*w, emb_dim]

        out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w)   # [batch_size, c, h, w]
        out = self.proj_out(out)   # [batch_size, c, h, w]

        print(out.shape)

        return out, att_weights

7.5 main

# coding:utf-8
# @Email: wangguisen@donews.com
# @Time: 2023/3/22 22:58
# @File: att_test.py
'''
Self Attention
Multi-Head Attention
Cross Attention
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from einops import rearrange, repeat
from torch.nn import MultiheadAttention

if __name__ == '__main__':
    '''
    '''

    '''
    假设词表映射后输入 
    batch_size = 3
    seq_len = max_len = 5
    pad = 0
    emb_dim = 512
    '''
    batch_size = 3
    seq_len = 5
    emb_dim = 512
    # 本例子则词表大小为 301
    vocab_size = 301

    input_ids = torch.tensor([[100, 200, 300, 300, 0],
                 [22, 33, 44, 0, 0],
                 [66, 55, 66, 30, 0]], dtype=torch.long)

    pad_mask = input_ids.eq(0)  # 逻辑矩阵pad_mask:将填充位置标记为True,其他位置标记为False
    # pad_mask = pad_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)  # [batch_size, seq_len, seq_len] = [3, 5, 5]

    inputs = nn.Embedding(vocab_size, embedding_dim=emb_dim)(input_ids)   # [batch_szie, seq_len, emb_dim] = [3, 5, 512]

    # self_att = SelfAttention(emb_dim=emb_dim)
    # self_att(inputs, pad_mask=pad_mask)

    # multi_att = MultiHeadAttention(emb_dim=emb_dim, num_heads=8)
    # multi_att(inputs, pad_mask=pad_mask)

    # 定义图片数据  [batch_size, c, h, w]
    input_img = torch.randn((3, 3, 512, 512))
    pad_mask = pad_mask.unsqueeze(1).expand(batch_size, 512*512, seq_len)
    # cross_att = Cross_MultiAttention(in_channels=3, emb_dim=emb_dim, num_heads=8, att_dropout=0.0, aropout=0.0)
    # cross_att(x=input_img, context=inputs, pad_mask=pad_mask)
    cross_att = CrossAttention(in_channels=3, emb_dim=emb_dim, att_dropout=0.0, aropout=0.0)
    cross_att(x=input_img, context=inputs, pad_mask=pad_mask)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/587535.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图搜索算法详解与示例代码

在计算机科学领域,图搜索算法是一类用于在图数据结构中查找特定节点或路径的算法。图搜索算法在许多领域都有着广泛的应用,包括网络路由、社交网络分析、游戏开发等。本文将详细介绍几种常见的图搜索算法,包括深度优先搜索(DFS&am…

大数据技术就业和发展前景怎么样

大数据技术的就业和发展前景极为乐观,具有行业需求旺盛、就业多样性、可持续发展潜力等特点, 上大学网 (www.sdaxue.com)整理出了大数据技术的就业和发展前景以下几个关键趋势,供大家参考! 行业需求旺盛&…

链表例题(分割链表)

链接: . - 力扣(LeetCode) 题目描述: 即将小于特定值的节点放在前面,大于特定值的节点接在后面 思路: 我们可以创建两个链表分别存放大于的值和小于的值。5个变量(记录链表当前位置的指针st…

【开发技巧 | 第一篇】Typora快捷键方式给字体添加颜色

文章目录 1.Typora快捷键方式给字体添加颜色1.1下载并安装AutoHotkey1.2新建ahk脚本文件1.3运行ahk脚本文件1.4小结 1.Typora快捷键方式给字体添加颜色 1.1下载并安装AutoHotkey 点击下载: https://autohotkey.com/download/ahk-install.exe下载安装包,执行安装&a…

前端开发攻略---介绍HTML中的<dialog>标签,浏览器的原生弹框。

1、演示 2、介绍 <dialog> 标签用于定义对话框&#xff0c;即一个独立的窗口&#xff0c;通常用来显示对话框、提示框、确认框等弹出式内容。在对话框中&#xff0c;可以包含文本、表单元素、按钮等内容&#xff0c;用户可以和这些内容进行交互。 3、兼容性 4、示例代码 …

02 spring-boot+mybatis+elementui 的登录,文件上传,增删改查的入门级项目

前言 主要是来自于 朋友的需求 项目概况 就是一个 学生信息的增删改查 然后 具体到业务这边 使用 mybatis xml 来配置的增删改查 后端这边 springboot mybatis mysql fastjson hutool 的一个基础的增删改查的学习项目, 简单容易上手 前端这边 node14 vue element…

ZABAPGIT问题,导入github上的程序包时报 DBSQL_DUPLICATE_KEY_ERROR

跟踪程序发现在94050行 INSERT seocompotx FROM TABLE it_descriptions 报的错 刚开始&#xff0c;不想着改动他&#xff0c;把seocompotx 表的数据做下指定清楚&#xff0c;但是5次清楚后&#xff0c;果断注释掉 改成 MODIFY seocompotx FROM TABLE it_descriptions。 在用…

算法训练营第十天 | LeetCode 232 用栈实现队列、LeetCode 225 用队列实现栈

栈的实现有顺序表和链式表两种&#xff0c;也就是数组和链表实现。 其中抽象栈类的私有成员函数有operator的重载函数和stack的构造函数&#xff0c;为了保护栈的构造和拷贝被保护。公有成员函数有Stack()&#xff0c;~Stack()&#xff0c;clear()&#xff0c;push()&#xff…

解决Redis的键值前出现类似\xAC\xED\x00\x05t\x00*这样的字符序列

文章目录 1.问题2.解决方法3.StringRedisTemplate和RedisTemplate的区别 1.问题 在使用RedisTemplate对Redis进行操作时,发现Reids键值对前有\xAC\xED\x00\x05t\x00*这样的字符序列 如图所示: 虽说不影响使用,但是听影响观感的 2.解决方法 查找了很多方法,可以指定RedisTem…

数据结构实验--实验02 栈的应用(数制转换及回文判断)

一、实验内容 二、算法实现 1、用栈的特性实现进转换的思路&#xff1a;参考手算求进制转换的思路——除r取余法&#xff0c;这里的r表示基数&#xff0c;8进制的基数就是8&#xff0c;那么将十进制数转换成8进制数手算的方法就是除8取余法&#xff0c;具体手算方法如图&#…

在安装有Acer软件保护卡的电脑上安装PRCS6

PRCS6下载地址https://www.yuque.com/u33774918/pqzsy8/gdo8n6hibxgzsghw 第一步&#xff0c;电脑开机进入windows系统 第二步&#xff0c;解压PRCS6到电脑桌面 第三步&#xff0c;打开电脑桌面的PRCS6文件夹&#xff0c;双击‘点我安装’&#xff0c;开始安装 第四步&…

windows浅尝NW.js

windows浅尝NW.js 在本指南中&#xff0c;我们将详细介绍如何在windows上部署NW.js,实现应用的构成、启动方式、开发环境 环境部署 首先我们需要从官网下载对应的压缩包 (https://nwjs.io/downloads/) 下载完成后解压&#xff0c;可以看到对应的文件目录 然后我们运行目录下…

数据结构与算法实验题五道 A一元多项式的求导 B还原二叉树 C 六度空间 D 基于词频的文件相似度 E 模拟excel排序

A (1) 输入格式说明&#xff1a; 以指数递降方式输入多项式非零项系数和指数&#xff08;绝对值均为不超过1000的整数&#xff09;。数字间以空格分隔。 (2) 输出格式说明&#xff1a; 以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔&#xff0c;但…

ffmpeg中stream_loop参数不生效原因分析

问题 使用ffmpeg把一个视频文件发布成一个rtmp流&#xff0c;并设置成循环推流&#xff0c;此时需要使用参数stream_loop&#xff0c;命令如下: ffmpeg.exe -stream_loop -1 -re -i D:\tools\ffmpeg-5.1.2\bin\sei.h264 -c copy -f flv -safe 0 rtmp://localhost:1935/live/te…

【智能算法】鹦鹉优化算法(WO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2024年&#xff0c;J Lian等人受到鹦鹉学习行为启发&#xff0c;提出了鹦鹉优化算法&#xff08;Parrot Optimizer, PO&#xff09;。 2.算法原理 2.1算法思想 PO灵感来自于在驯养的鹦鹉中观察到的…

go稀疏数组

稀疏数组 稀疏数组 稀疏数组 package testimport ("encoding/json""fmt""io/ioutil""log""reflect""testing" )type ValNode struct {Row int json:"row"Col int json:"col"Val int json:&qu…

分布式与一致性协议之Raft算法与一致哈希算法(一)

Raft算法 Raft与一致性 有很多人把Raft算法当成一致性算法&#xff0c;其实它不是一致性算法而是共识算法&#xff0c;是一个Multi-Paxos算法&#xff0c;实现的是如何就一系列值达成共识。并且&#xff0c;Raft算法能容忍少数节点的故障。虽然Raft算法能实现强一致性&#x…

黑马 - websocket搭建在线聊天室

这里写自定义目录标题 一、消息推送常见方式二、websocket 是什么&#xff1f;三、websocket api的介绍1、客户端 &#xff08;浏览器&#xff09; 四、实现在线聊天室1、需求2、聊天室流程分析3、消息格式4、代码实现 一、消息推送常见方式 1、轮训方式 2、SSE&#xff08;…

通用漏洞评估系统CVSS4.0简介

文章目录 什么是CVSS&#xff1f;CVSS 漏洞等级分类历史版本的 CVSS 存在哪些问题&#xff1f;CVSS 4.0改进的“命名法”改进的“基本指标”考虑“OT/IOT”新增的“其他指标”CVSS 4.0存在的问题 Reference: 什么是CVSS&#xff1f; 在信息安全评估领域&#xff0c;CVSS为我们…

IP-guard WebServer 2024年两个漏洞简单分析

前言 这个漏洞看完索然无味&#xff0c;但是手上又刚好有源码&#xff0c;不看他一下又觉得可惜 权限绕过漏洞(QVD-2024-14103)简单分析 网上冲浪的时候&#xff0c;看到个买不起的CSDN专栏 这里基本上定位到是_mApplyList 出了问题&#xff0c;前面两个是ipguard webserve…