YOLOv5入门(二)处理自己数据集(标签统计、数据集划分、数据增强)

上一节中我们讲到如何使用Labelimg工具标注自己的数据集,链接:YOLOv5利用Labelimg标注自己数据集,完成1658张数据集的预处理,接下来将进一步处理这批数据,通常是先划分再做数据增强

目录

  • 一、统计txt文件各标签类型的数量
  • 二、数据准备
  • 三、数据集划分
  • 四、数据增强

一、统计txt文件各标签类型的数量

第一步:查看txt文件,将类别与索引值对应

在这里插入图片描述

green-circle--0
green-left--1
green-straight--2
green-right--3
red-circle--4
red-left--5
red-straight--6
red-right--7
yellow-circle--8
yellow-left--9
yellow-straight--10
yellow-right--11

第二步:根据以上索引运行代码

import os

def get_every_class_num(txt_folder_path):
    # 需修改,根据自己的类别,注意一一对应
    class_categories = ['0', '1', '2', '3', '4',
                        '5', '6', '7', '8', '9',
                        '10', '11']
    class_num = len(class_categories)  # 样本类别数
    class_num_list = [0] * class_num

    # 获取文件夹下所有txt文件
    txt_files = [file for file in os.listdir(txt_folder_path) if file.endswith('.txt')]

    for txt_file in txt_files:
        file_path = os.path.join(txt_folder_path, txt_file)
        with open(file_path, 'r') as file:
            file_data = file.readlines()  # 读取所有行
            for every_row in file_data:
                class_str = every_row.split(' ')[0].strip()  # 去除换行符
                if class_str in class_categories:
                    class_ind = class_categories.index(class_str)
                    class_num_list[class_ind] += 1

    # 输出每一类的数量以及总数
    result = dict(zip(class_categories, class_num_list))
    for name, num in result.items():
        print(name, ":", num)
    print("-----------------------------------")
    print('total:', sum(class_num_list))

if __name__ == '__main__':
    # 需修改,txt文件夹所在路径
    txt_folder_path = r'F:\yolov5\红绿灯多属性数据集\labels'
    get_every_class_num(txt_folder_path)

结果如下~

在这里插入图片描述

二、数据准备

1、txt转xml格式

from xml.dom.minidom import Document
import os
import cv2

def makexml(picPath, txtPath, xmlPath):  # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
    """此函数用于将yolo格式txt标注文件转换为voc格式xml标注文件
    """
    dic = {'0': "green-circle",  # 创建字典用来对类型进行转换
           '1': "green-left",  # 此处的字典要与自己的classes.txt文件中的类对应,且顺序要一致
           '2': "green-straight",
           '3': "green-right",
           '4': "red-circle",
           '5': "red-left",
           '6': "red-straight",
           '7': "red-right",
           '8': "yellow-circle",
           '9': "yellow-left",
           '10': "yellow-straight",
           '11': "yellow-right",
           }
    files = os.listdir(txtPath)
    for i, name in enumerate(files):
        xmlBuilder = Document()
        annotation = xmlBuilder.createElement("annotation")  # 创建annotation标签
        xmlBuilder.appendChild(annotation)
        txtFile = open(txtPath + name)
        txtList = txtFile.readlines()
        img = cv2.imread(picPath + name[0:-4] + ".jpg")
        Pheight, Pwidth, Pdepth = img.shape
        folder = xmlBuilder.createElement("folder")  # folder标签
        foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")
        folder.appendChild(foldercontent)
        annotation.appendChild(folder)  # folder标签结束
        filename = xmlBuilder.createElement("filename")  # filename标签
        filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".jpg")
        filename.appendChild(filenamecontent)
        annotation.appendChild(filename)  # filename标签结束
        size = xmlBuilder.createElement("size")  # size标签
        width = xmlBuilder.createElement("width")  # size子标签width
        widthcontent = xmlBuilder.createTextNode(str(Pwidth))
        width.appendChild(widthcontent)
        size.appendChild(width)  # size子标签width结束
        height = xmlBuilder.createElement("height")  # size子标签height
        heightcontent = xmlBuilder.createTextNode(str(Pheight))
        height.appendChild(heightcontent)
        size.appendChild(height)  # size子标签height结束
        depth = xmlBuilder.createElement("depth")  # size子标签depth
        depthcontent = xmlBuilder.createTextNode(str(Pdepth))
        depth.appendChild(depthcontent)
        size.appendChild(depth)  # size子标签depth结束
        annotation.appendChild(size)  # size标签结束
        for j in txtList:
            oneline = j.strip().split(" ")
            object = xmlBuilder.createElement("object")  # object 标签
            picname = xmlBuilder.createElement("name")  # name标签
            namecontent = xmlBuilder.createTextNode(dic[oneline[0]])
            picname.appendChild(namecontent)
            object.appendChild(picname)  # name标签结束
            pose = xmlBuilder.createElement("pose")  # pose标签
            posecontent = xmlBuilder.createTextNode("Unspecified")
            pose.appendChild(posecontent)
            object.appendChild(pose)  # pose标签结束
            truncated = xmlBuilder.createElement("truncated")  # truncated标签
            truncatedContent = xmlBuilder.createTextNode("0")
            truncated.appendChild(truncatedContent)
            object.appendChild(truncated)  # truncated标签结束
            difficult = xmlBuilder.createElement("difficult")  # difficult标签
            difficultcontent = xmlBuilder.createTextNode("0")
            difficult.appendChild(difficultcontent)
            object.appendChild(difficult)  # difficult标签结束
            bndbox = xmlBuilder.createElement("bndbox")  # bndbox标签
            xmin = xmlBuilder.createElement("xmin")  # xmin标签
            mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)
            xminContent = xmlBuilder.createTextNode(str(mathData))
            xmin.appendChild(xminContent)
            bndbox.appendChild(xmin)  # xmin标签结束
            ymin = xmlBuilder.createElement("ymin")  # ymin标签
            mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)
            yminContent = xmlBuilder.createTextNode(str(mathData))
            ymin.appendChild(yminContent)
            bndbox.appendChild(ymin)  # ymin标签结束
            xmax = xmlBuilder.createElement("xmax")  # xmax标签
            mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)
            xmaxContent = xmlBuilder.createTextNode(str(mathData))
            xmax.appendChild(xmaxContent)
            bndbox.appendChild(xmax)  # xmax标签结束
            ymax = xmlBuilder.createElement("ymax")  # ymax标签
            mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)
            ymaxContent = xmlBuilder.createTextNode(str(mathData))
            ymax.appendChild(ymaxContent)
            bndbox.appendChild(ymax)  # ymax标签结束
            object.appendChild(bndbox)  # bndbox标签结束
            annotation.appendChild(object)  # object标签结束
        f = open(xmlPath + name[0:-4] + ".xml", 'w')
        xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
        f.close()
if __name__ == "__main__":
    picPath = "F:/yolov5/datasets/images/"  # 图片所在文件夹路径,后面的/一定要带上
    txtPath = "F:/yolov5/datasets/labels_txt/"  # txt所在文件夹路径,后面的/一定要带上
    xmlPath = "F:/yolov5/datasets/labels_xml/"  # xml文件保存路径,后面的/一定要带上
    makexml(picPath, txtPath, xmlPath)

转换成以下内容的xml文件~

在这里插入图片描述

三、数据集划分

对数据集进行预处理之后,就可以开始对数据集划分,这里一定要在数据增强之前,我们一般将数据集划分为:训练集、验证集、测试集三类。

以下这个比喻很恰当:模型的训练与学习,类似与老师教学生知识的过程。

* 1、训练集(train):用于训练模型以及确定参数。类似于老师教学生知识的过程。
* 2、验证集(vaild):用于确定网络结构以及调整模型的超参数。相当于月考等小测验,用于对学生查漏补缺。
* 3、测试机(test):用于检验模型的泛化能力。相当于大考,上战场一样,检验学生的学习效果。
参数(parameters):指由模型通过学习得到的变量,如权重w和偏置b.
超参数(hypeparameters):指根据经验进行设定的参数,如迭代次数,隐层的层数,每层神经元的个数,学习率等。

根据自己实际需求,数据量不是很大的时候(万级别以下)将训练集、验证集、测试集划分为6:2:2;若是数据很大,可以将训练集、验证集、测试集划分为8:1:1。

1、在YOLOv5/datasets下创建对应文件夹

在这里插入图片描述

images:原始图像
labels_txt:txt标注格式
labels_xml:xml标注格式
splitsets:保存划分好的训练集、测试集和验证集

2、划分代码

import os
import shutil
import random

random.seed(0)


def split_data(file_path, xml_path, new_file_path, train_rate, val_rate, test_rate):
    each_class_image = []
    each_class_label = []
    for image in os.listdir(file_path):
        each_class_image.append(image)
    for label in os.listdir(xml_path):
        each_class_label.append(label)
    data = list(zip(each_class_image, each_class_label))
    total = len(each_class_image)
    random.shuffle(data)  #使用函数打乱顺序
    each_class_image, each_class_label = zip(*data) #将两个列表解绑
    #分别获取train、val、test这三个文件夹对应的图片和标签
    train_images = each_class_image[0:int(train_rate * total)]
    val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]
    test_images = each_class_image[int((train_rate + val_rate) * total):]
    train_labels = each_class_label[0:int(train_rate * total)]
    val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]
    test_labels = each_class_label[int((train_rate + val_rate) * total):]
    #设置相应的路径保存格式,将图片和标签对应保存下来
    for image in train_images:
        print(image)
        old_path = file_path + '/' + image
        new_path1 = new_file_path + '/' + 'train' + '/' + 'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + image
        shutil.copy(old_path, new_path)

    for label in train_labels:
        print(label)
        old_path = xml_path + '/' + label
        new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + label
        shutil.copy(old_path, new_path)

    for image in val_images:
        old_path = file_path + '/' + image
        new_path1 = new_file_path + '/' + 'val' + '/' + 'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + image
        shutil.copy(old_path, new_path)

    for label in val_labels:
        old_path = xml_path + '/' + label
        new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + label
        shutil.copy(old_path, new_path)

    for image in test_images:
        old_path = file_path + '/' + image
        new_path1 = new_file_path + '/' + 'test' + '/' + 'images'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + image
        shutil.copy(old_path, new_path)

    for label in test_labels:
        old_path = xml_path + '/' + label
        new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'
        if not os.path.exists(new_path1):
            os.makedirs(new_path1)
        new_path = new_path1 + '/' + label
        shutil.copy(old_path, new_path)


if __name__ == '__main__':
    file_path = r"F:\yolov5\datasets\images"
    xml_path = r"F:\yolov5\datasets\labels_xml"
    new_file_path = r"F:\yolov5\datasets\splitsets"
    split_data(file_path, xml_path, new_file_path, train_rate=0.6, val_rate=0.2, test_rate=0.2)

下面为划分之后文件夹的效果,并查看对应比例~

在这里插入图片描述

训练集、测试集和验证集文件夹对应的数量分别为1988、664和664。到这一步就完成数据集的基本操作,达到训练要求

四、数据增强

1、创建图像增强后保存的文件夹

在划分好后的训练集(train)文件夹下分别创建增强后的图片和标签文件夹

在这里插入图片描述

2、图像增强代码

代码中包含加噪声、改变亮度、裁剪、平移、旋转、镜像、cutout等方法。选用特定方法,只需修改代码中的参数设置。

# -*- coding=utf-8 -*-

import time
import random
import copy
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from lxml import etree, objectify
import xml.etree.ElementTree as ET
import argparse


# 显示图片
def show_pic(img, bboxes=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3)
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200, 800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=5,
                 crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                 add_noise_rate=0.5, flip_rate=0.5,
                 cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5,
                 is_addNoise=True, is_changeLight=True, is_cutout=True, is_rotate_img_bbox=True,
                 is_crop_img_bboxes=True, is_shift_pic_bboxes=True, is_filp_pic_bboxes=True):

        # 配置各个操作的属性
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate

        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold

        # 是否使用某种增强方式
        self.is_addNoise = is_addNoise
        self.is_changeLight = is_changeLight
        self.is_cutout = is_cutout
        self.is_rotate_img_bbox = is_rotate_img_bbox
        self.is_crop_img_bboxes = is_crop_img_bboxes
        self.is_shift_pic_bboxes = is_shift_pic_bboxes
        self.is_filp_pic_bboxes = is_filp_pic_bboxes

    # ----1.加噪声---- #
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # return cv2.GaussianBlur(img, (11, 11), 0)
        return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True) * 255

    # ---2.调整亮度--- #
    def _changeLight(self, img):
        alpha = random.uniform(0.35, 1)
        blank = np.zeros(img.shape, img.dtype)
        return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)

    # ---3.cutout--- #
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''

        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''
            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
            iou = interArea / float(boxBArea)
            return iou

        # 得到h和w
        if img.ndim == 3:
            h, w, c = img.shape
        else:
            _, h, w, c = img.shape
        mask = np.ones((h, w, c), np.float32)
        for n in range(n_holes):
            chongdie = True  # 看切割的区域是否与box重叠太多
            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0,
                             h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1, y1, x2, y2], box) > threshold:
                        chongdie = True
                        break
            mask[y1: y2, x1: x2, :] = 0.
        img = img * mask
        return img

    # ---4.旋转--- #
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        # 旋转图像
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale
        nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
        # the move only affects the translation, so update the translation
        rot_mat[0, 2] += rot_move[0]
        rot_mat[1, 2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        # 矫正bbox坐标
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx + rw
            ry_max = ry + rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])

        return rot_img, rot_bboxes

    # ---5.裁剪--- #
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        # 裁剪图像
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离
        d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离

        # 随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        # 确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]

        # 裁剪boundingbox
        # 裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])

        return crop_img, crop_bboxes

    # ---6.平移--- #
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        # 平移图像
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最大左移动距离
        d_to_right = w - x_max  # 包含所有目标框的最大右移动距离
        d_to_top = y_min  # 包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
        y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)

        M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))

        #  平移boundingbox
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])

        return shift_img, shift_bboxes

    # ---7.镜像--- #
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # 翻转图像

        flip_img = copy.deepcopy(img)
        h, w, _ = img.shape

        sed = random.random()

        if 0 < sed < 0.33:  # 0.33的概率水平翻转,0.33的概率垂直翻转,0.33是对角反转
            flip_img = cv2.flip(flip_img, 0)  # _flip_x
            inver = 0
        elif 0.33 < sed < 0.66:
            flip_img = cv2.flip(flip_img, 1)  # _flip_y
            inver = 1
        else:
            flip_img = cv2.flip(flip_img, -1)  # flip_x_y
            inver = -1

        # 调整boundingbox
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]

            if inver == 0:
                # 0:垂直翻转
                flip_bboxes.append([x_min, h - y_max, x_max, h - y_min])
            elif inver == 1:
                # 1:水平翻转
                flip_bboxes.append([w - x_max, y_min, w - x_min, y_max])
            elif inver == -1:
                # -1:水平垂直翻转
                flip_bboxes.append([w - x_max, h - y_max, w - x_min, h - y_min])
        return flip_img, flip_bboxes

    # 图像增强方法
    def dataAugment(self, img, bboxes):
        '''
        图像增强
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  # 改变的次数
        # print('------')
        while change_num < 1:  # 默认至少有一种数据增强生效

            if self.is_rotate_img_bbox:
                if random.random() > self.rotation_rate:  # 旋转
                    change_num += 1
                    angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
                    scale = random.uniform(0.7, 0.8)
                    img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)

            if self.is_shift_pic_bboxes:
                if random.random() < self.shift_rate:  # 平移
                    change_num += 1
                    img, bboxes = self._shift_pic_bboxes(img, bboxes)

            if self.is_changeLight:
                if random.random() > self.change_light_rate:  # 改变亮度
                    change_num += 1
                    img = self._changeLight(img)

            if self.is_addNoise:
                if random.random() < self.add_noise_rate:  # 加噪声
                    change_num += 1
                    img = self._addNoise(img)
            if self.is_cutout:
                if random.random() < self.cutout_rate:  # cutout
                    change_num += 1
                    img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes,
                                       threshold=self.cut_out_threshold)
            if self.is_filp_pic_bboxes:
                if random.random() < self.flip_rate:  # 翻转
                    change_num += 1
                    img, bboxes = self._filp_pic_bboxes(img, bboxes)

        return img, bboxes


# xml解析工具
class ToolHelper():
    # 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    def parse_xml(self, path):
        '''
        输入:
            xml_path: xml的文件路径
        输出:
            从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
        '''
        tree = ET.parse(path)
        root = tree.getroot()
        objs = root.findall('object')
        coords = list()
        for ix, obj in enumerate(objs):
            name = obj.find('name').text
            box = obj.find('bndbox')
            x_min = int(box[0].text)
            y_min = int(box[1].text)
            x_max = int(box[2].text)
            y_max = int(box[3].text)
            coords.append([x_min, y_min, x_max, y_max, name])
        return coords

    # 保存图片结果
    def save_img(self, file_name, save_folder, img):
        cv2.imwrite(os.path.join(save_folder, file_name), img)

    # 保持xml结果
    def save_xml(self, file_name, save_folder, img_info, height, width, channel, bboxs_info):
        '''
        :param file_name:文件名
        :param save_folder:#保存的xml文件的结果
        :param height:图片的信息
        :param width:图片的宽度
        :param channel:通道
        :return:
        '''
        folder_name, img_name = img_info  # 得到图片的信息

        E = objectify.ElementMaker(annotate=False)

        anno_tree = E.annotation(
            E.folder(folder_name),
            E.filename(img_name),
            E.path(os.path.join(folder_name, img_name)),
            E.source(
                E.database('Unknown'),
            ),
            E.size(
                E.width(width),
                E.height(height),
                E.depth(channel)
            ),
            E.segmented(0),
        )

        labels, bboxs = bboxs_info  # 得到边框和标签信息
        for label, box in zip(labels, bboxs):
            anno_tree.append(
                E.object(
                    E.name(label),
                    E.pose('Unspecified'),
                    E.truncated('0'),
                    E.difficult('0'),
                    E.bndbox(
                        E.xmin(box[0]),
                        E.ymin(box[1]),
                        E.xmax(box[2]),
                        E.ymax(box[3])
                    )
                ))

        etree.ElementTree(anno_tree).write(os.path.join(save_folder, file_name), pretty_print=True)


if __name__ == '__main__':

    need_aug_num = 5  # 每张图片需要增强的次数

    is_endwidth_dot = True  # 文件是否以.jpg或者png结尾

    dataAug = DataAugmentForObjectDetection()  # 数据增强工具类

    toolhelper = ToolHelper()  # 工具

    # 获取相关参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--source_img_path', type=str, default=r'F:\yolov5\datasets\splitsets\train\images')
    parser.add_argument('--source_xml_path', type=str, default=r'F:\yolov5\datasets\splitsets\train\labels')
    parser.add_argument('--save_img_path', type=str, default=r'F:\yolov5\datasets\splitsets\train\enhance_images')
    parser.add_argument('--save_xml_path', type=str, default=r'F:\yolov5\datasets\splitsets\train\enhance_labels')
    args = parser.parse_args()
    source_img_path = args.source_img_path  # 图片原始位置
    source_xml_path = args.source_xml_path  # xml的原始位置

    save_img_path = args.save_img_path  # 图片增强结果保存文件
    save_xml_path = args.save_xml_path  # xml增强结果保存文件

    # 如果保存文件夹不存在就创建
    if not os.path.exists(save_img_path):
        os.mkdir(save_img_path)

    if not os.path.exists(save_xml_path):
        os.mkdir(save_xml_path)

    for parent, _, files in os.walk(source_img_path):
        files.sort()
        for file in files:
            cnt = 0
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_path, file[:-4] + '.xml')
            values = toolhelper.parse_xml(xml_path)  # 解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coords = [v[:4] for v in values]  # 得到框
            labels = [v[-1] for v in values]  # 对象的标签

            # 如果图片是有后缀的
            if is_endwidth_dot:
                # 找到文件的最后名字
                dot_index = file.rfind('.')
                _file_prefix = file[:dot_index]  # 文件名的前缀
                _file_suffix = file[dot_index:]  # 文件名的后缀
            img = cv2.imread(pic_path)

            # show_pic(img, coords)  # 显示原图
            while cnt < need_aug_num:  # 继续增强
                auged_img, auged_bboxes = dataAug.dataAugment(img, coords)
                auged_bboxes_int = np.array(auged_bboxes).astype(np.int32)
                height, width, channel = auged_img.shape  # 得到图片的属性
                img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix)  # 图片保存的信息
                toolhelper.save_img(img_name, save_img_path,
                                    auged_img)  # 保存增强图片

                toolhelper.save_xml('{}_{}.xml'.format(_file_prefix, cnt + 1),
                                    save_xml_path, (save_img_path, img_name), height, width, channel,
                                    (labels, auged_bboxes_int))  # 保存xml文件
                # show_pic(auged_img, auged_bboxes)  # 强化后的图
                print(img_name)
                cnt += 1  # 继续增强下一张

3、修改运行

  • 修改文件路径

在这里插入图片描述

  • 这里设置增强5次

在这里插入图片描述

  • 选用特定方法,这里选择不使用镜像,修改格式如下:

在这里插入图片描述

下面为增强之后的图片效果,这里可以看到每张图片增强5次

在这里插入图片描述

注意事项

深度学习中训练集需要数据增强,验证集和测试集不需要做数据增强

1、验证集和测试集不需要扩充,数据扩充指针对训练集。

2、比例指的是对原始数据划分的比例,不考虑增强后的。

3、首先要明白做数据增强的意义,是为了利用现有训练集的数据,通过增强变换获得更丰富的信息,从而在测试集(验证机)上获得更好的泛化能力;

4、如果先做增强再进行数据集的划分,那么会出现信息泄露的问题,导致同一张图片增强后的多张图片分别出现在训练集和测试集(验证集),那么由于在训练集里见过相似度很高的图片,测试(验证)的准确率就会很高,这时的测试准确率结果是不可靠的。

将增强后的数据与原数据合并,最终得到5964张照片

在这里插入图片描述

4、将xml文件转为txt文件

YOLO识别的格式为txt,这里将xml转成txt,代码如下:

import xml.etree.ElementTree as ET
import os
from os import getcwd
import glob

# 1.自己创建文件夹,例如:label_mal label_txt  也可以修改别的
image_set = r'labels_xml'  # 需要转换的文件夹名称(文件夹内放xml标签文件)
imageset2 = r'labels'  # 保存txt的文件夹
# 2.换成你的类别 当前的顺序,就txt 0,1,2,3 四个类别
classes = ['green-circle','green-left','green-straight','green-right','red-circle',
           'red-left','red-straight','red-right','yellow-circle','yellow-left',
           'yellow-straight','yellow-right']  # 标注时的标签 注意顺序一定不要错。

# 3.转换文件夹的绝对路径
data_dir = r'F:\yolov5\datasets\splitsets\train'


'''
xml中框的左上角坐标和右下角坐标(x1,y1,x2,y2)
》》txt中的中心点坐标和宽和高(x,y,w,h),并且归一化
'''


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(data_dir, imageset1, imageset2, image_id):
    in_file = open(data_dir + '/%s/%s.xml' % (imageset1, image_id), encoding='UTF-8')  # 读取xml
    out_file = open(data_dir + '/%s/%s.txt' % (imageset2, image_id), 'w', encoding='UTF-8')  # 保存txt

    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)  # 获取类别索引
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str('%.6f' % a) for a in bb]) + '\n')


image_ids = []
for x in glob.glob(data_dir + '/%s' % image_set + '/*.xml'):
    image_ids.append(os.path.basename(x)[:-4])
print('\n%s数量:' % image_set, len(image_ids))  # 确认数量
i = 0
for image_id in image_ids:
    i = i + 1
    convert_annotation(data_dir, image_set, imageset2, image_id)
    print("%s 数据:%s/%s文件完成!" % (image_set, i, len(image_ids)))

print("Done!!!")

修改代码中的路径与类别数量

在这里插入图片描述

最终将格式转成txt格式!

在这里插入图片描述

操作完成之后,文件夹的结构如下所示:

在这里插入图片描述

好了,到这一步关于数据集的处理到此结束,接下来就是开始训练的阶段!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/586690.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】——数据在内存中的存储

【C语言】——数据在内存中的存储 一、整数在内存中的存储1.1、整数的存储方式1.2、大小端字节序&#xff08;1&#xff09;大小端字节序的定义&#xff08;2&#xff09;判断大小端 1.3、整型练习 二、浮点数在内存中的存储2.1、引言2.2、浮点数的存储规则2.3、浮点数的存储过…

OI Wiki—递归 分治

//新生训练&#xff0c;搬运整理 递归 定义 递归&#xff08;英语&#xff1a;Recursion&#xff09;&#xff0c;在数学和计算机科学中是指在函数的定义中使用函数自身的方法&#xff0c;在计算机科学中还额外指一种通过重复将问题分解为同类的子问题而解决问题的方法。 引入…

完美解决AttributeError: module ‘backend_interagg‘ has no attribute ‘FigureCanvas‘

遇到这种错误通常是因为matplotlib的后端配置问题。在某些环境中&#xff0c;尤其是在某些特定的IDE或Jupyter Notebook环境中&#xff0c;可能会因为后端配置不正确而导致错误。错误信息提示 module backend_interagg has no attribute FigureCanvas 意味着当前matplotlib的后…

基于STC12C5A60S2系列1T 8051单片机的Proteus中的单片机发送一帧或一串数据给串口调试助手软件接收区显示出来的串口通信应用

基于STC12C5A60S2系列1T 8051单片机的Proteus中的单片机发送一帧或一串数据给串口调试助手软件接收区显示出来的串口通信应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机串口通信介绍STC12C5A60S2系列1T 8051单片机串口通信的结构基于STC12C5A60S2系列…

【MyBatis】 MyBatis框架下的高效数据操作:深入理解增删查改(CRUD)

&#x1f493; 博客主页&#xff1a;从零开始的-CodeNinja之路 ⏩ 收录文章&#xff1a;【MyBatis】 MyBatis框架下的高效数据操作&#xff1a;深入理解增删查改&#xff08;CRUD&#xff09; &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 My …

工具分享:免费一键生成像素风格头像神器

目录 引言神器介绍使用方法上传照⽚选择像素大小保存or分享图片生后图像处理功能娱乐功能 结语最后 引言 五一前一天和群友聊到换微信头像的事情&#xff0c;我就心想自己制作一些头像来用吧&#xff0c;起初是用的无界AI通过咒语来生成头像&#xff0c;但总不尽如人意。如下&…

TFLOPS和TOPS介绍

TFLOPS和TOPS都是衡量计算设备性能的单位&#xff0c;常用于评估处理器或加速器在科学计算、图形处理以及人工智能领域的运算能力。它们分别代表不同的运算类型&#xff1a; TFLOPS (Tera Floating Point Operations Per Second) TFLOPS用于衡量每秒执行的万亿次浮点运算数。…

「 网络安全常用术语解读 」软件物料清单SBOM详解

1. 概览 软件物料清单&#xff08;Software Bill of Materials&#xff0c;SBOM&#xff09;是软件成分信息的集合&#xff0c;SBOM文件中记录了软件产品或服务所使用组件、库、框架的清单&#xff0c;用于描述软件构建过程中使用的所有组件及其关系&#xff0c;以实现软件供应…

spring的高阶使用技巧1——ApplicationListener注册监听器的使用

Spring中的监听器&#xff0c;高阶开发工作者应该都耳熟能详。在 Spring 框架中&#xff0c;这个接口允许开发者注册监听器来监听应用程序中发布的事件。Spring的事件处理机制提供了一种观察者模式的实现&#xff0c;允许应用程序组件之间进行松耦合的通信。 更详细的介绍和使…

22 重构系统升级-实现不停服的数据迁移和用户切量

专栏的前 21 讲&#xff0c;从读、写以及扣减的角度介绍了三种特点各异的微服务的构建技巧&#xff0c;最后从微服务的共性问题出发&#xff0c;介绍了这些共性问题的应对技巧。 在实际工作中&#xff0c;你就可以参考本专栏介绍的技巧构建新的微服务&#xff0c;架构一个具备…

【Schrödinger薛定谔软件使用实战】- 4lyw蛋白实战

文章目录 软件选择1 pretein preparation1.1 import and process注意1.1.1 preprocess可能遇到的问题 1.2 review and modify1.3 refine1.3.1 optimize优化氢键网络1.3.2 minimize 氢原子会进行能量最小化 2 ligand prepare3 生成对接盒子-receptor grid generation3.1 recepto…

Q1营收稳健增长,云从科技如何在“百模大战”的险中求稳?

自从迈入大模型时代&#xff0c;AI行业可谓“一天一个样”。越来越多的企业涌现&#xff0c;舆论热议从未断绝。 但就像所有技术必须经历的那些考验&#xff0c;在现实尺度下&#xff0c;AI顺利走进商业化世界&#xff0c;仍然是少部分玩家掌握的稀缺能力。个中原因不尽相同&a…

第49期|GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以找…

javase学习01-GUI设计中的菜单条,菜单及菜单项(简单的实现)

目录 一&#xff0c;效果及代码 二&#xff0c;相关内容 1&#xff0c;创建图片资源文件夹 2&#xff0c;菜单初识 3&#xff0c;图标大小设置 4&#xff0c;菜单高度设置 5&#xff0c;设置窗口的图标 ☀ 今天学习了Java的GUI&#xff08;graphics user interface&…

C++入门基础(二)

目录 缺省参数缺省参数概念缺省参数分类全缺省参数半缺省参数声明与定义分离 缺省参数的应用 函数重载函数重载概念例子1 参数类型不同例子2 参数的个数不同例子3 参数的顺序不同 C支持函数重载的原理--名字修饰(name Mangling) 感谢各位大佬对我的支持,如果我的文章对你有用,欢…

报错“Install Js dependencies failed”【鸿蒙开发Bug已解决】

文章目录 项目场景:问题描述原因分析:解决方案:此Bug解决方案总结Bug解决方案寄语项目场景: 最近也是遇到了这个问题,看到网上也有人在询问这个问题,本文总结了自己和其他人的解决经验,解决了【报错“Install Js dependencies failed”】的问题。 报错如下 问题描述 …

量子信息杂谈系列(一):关于费曼学习法

小伙伴们劳动节快乐呀&#xff0c;放假这几天博主准备从工作中“逃离”出来&#xff0c;分享一些轻松的话题。 一转眼我在一个多月的时间已经输出了二十多篇博客了&#xff0c;这些博客编写过程中查阅资料、消化理论和文本的编写等工作几乎占据了我所有的业余时间&#xff0c;压…

Golang | Leetcode Golang题解之第62题不同路径

题目&#xff1a; 题解&#xff1a; func uniquePaths(m, n int) int {return int(new(big.Int).Binomial(int64(mn-2), int64(n-1)).Int64()) }

2024 五一杯高校数学建模邀请赛(B题)| 交通需求规划|建模秘籍文章代码思路大全

铛铛&#xff01;小秘籍来咯&#xff01; 小秘籍团队独辟蹊径&#xff0c;构建了这一题的详细解答哦&#xff01; 为大家量身打造创新解决方案。小秘籍团队&#xff0c;始终引领着建模问题求解的风潮。 抓紧小秘籍&#xff0c;我们出发吧~ 让我们看看五一杯的B题&#xff01; 完…

FSNotes for Mac v6.7.1中文激活:轻量级笔记管理工具

FSNotes for Mac&#xff0c;一款专为Mac用户打造的轻量级笔记管理工具&#xff0c;让您的笔记管理变得简单而高效。 FSNotes for Mac v6.7.1中文激活版下载 它采用Markdown文件格式&#xff0c;让您轻松创建和编辑富文本笔记&#xff0c;无需担心格式问题。同时&#xff0c;FS…