Python使用设计模式中的建筑模式将数据写入Excel且满足条件内容标红

对于这个任务,适合使用"Builder"设计模式。Builder模式的主要目的是将对象的构建与其表示分离,以便相同的构建过程可以创建不同的表示。在这个情况下,我们需要一个构建器来逐行构建Excel表格,并根据给定的数据添加相应的统计结果。

下面是一个简单的示例,展示了如何使用Builder模式来实现这个功能:


import pandas as pd

# 定义构建器类
class ExcelBuilder:
    def __init__(self, headers):
        self.headers = headers
        self.result_df = pd.DataFrame(columns=headers) # 定位DataFrame中下一个可用的行

    def add_row(self, data):
        self.result_df.loc[len(self.result_df)] = data

    def export_excel(self, filename):
        excel_writer = pd.ExcelWriter(filename, engine='xlsxwriter')
        self.result_df.to_excel(excel_writer, index=False, sheet_name='Sheet1')

        # 获取工作簿和工作表对象
        workbook = excel_writer.book
        worksheet = excel_writer.sheets['Sheet1']
        # 添加条件格式:将值大于25的单元格标红
        red_format = workbook.add_format({'bg_color': '#FFC7CE', 'font_color': '#9C0006'})
        worksheet.conditional_format('B2:D1000', {'type': 'cell', 'criteria': '>', 'value': 25, 'format': red_format})

        # excel_writer.save()
        excel_writer.close()
        print("Excel表格已生成")

# 使用构建器来构建Excel表格
headers = ['类别', '结果1', '结果2', '结果3']
excel_builder = ExcelBuilder(headers)

# 假设这是你的统计结果,以列表形式存储
statistics = [
    ['A', 10, 20, 30],
    ['B', 15, 25, 35],
    ['C', 20, 30, 40],
    ['D', 20, 30, "4a"]
]

# 逐行添加统计结果
for row in statistics:
    excel_builder.add_row(row)

# 导出Excel表格
excel_builder.export_excel('统计结果.xlsx')

运行结果

在这个示例中,我们首先定义了一个`ExcelBuilder`类,用于构建Excel表格。该类有三个方法:`__init__`用于初始化构建器,`add_row`用于逐行添加统计结果,`export_excel`用于将构建好的Excel表格导出到文件中。然后,我们使用构建器来创建Excel表格并逐行添加统计结果,最后导出到文件中。

self.result_df = pd.DataFrame(columns=headers)这行代码是用于将数据逐行添加到DataFrame中的。让我一步一步解释:
  1. self.result_df 是一个DataFrame对象,它存储着我们的统计结果数据。

  2. len(self.result_df) 返回DataFrame中已有的行数。

  3. self.result_df.loc[len(self.result_df)] 是用来定位DataFrame中下一个可用的行,并将数据添加到这一行中。

  4. = data 则是将data变量中的数据赋值给这一行,这样就完成了一行数据的添加操作。

综合起来,这行代码的作用是将数据逐行添加到DataFrame中的下一个可用行中。

worksheet.conditional_format('B2:D1000', {'type': 'cell', 'criteria': '>', 'value': 25, 'format': red_format})这行代码是用来设置 Excel 工作表中的条件格式的。让我解释一下参数的含义:
  • 'B2:D1000':这是条件格式应用的范围。它指定了要应用条件格式的单元格范围,从 B2 到 D1000。
  • {'type': 'cell', 'criteria': '>', 'value': 25, 'format': red_format}:这是条件格式的规则。具体含义如下:
    • 'type': 'cell':指定条件格式的类型为单元格。
    • 'criteria': '>':指定条件为大于。这意味着我们希望对满足大于某个值的单元格应用条件格式。
    • 'value': 25:这是条件的值。在本例中,条件是大于25的单元格将被标红。
    • 'format': red_format:这是应用的格式。red_format 是之前定义的红色格式,它指定了标红的背景色和字体颜色。

因此,这行代码的作用是将范围内数值大于25的单元格标记为红色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/583946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++中auto关键字的用法详解

1.简介 auto作为一个C语言就存在的关键字,在C语言和C之间却有很大区别。 在C语言中auto修饰的变量,是具有自动存储器的局部变量,但因为局部变量默认类别默认是auto修饰导致一直没有人去使用它。 C11中,标准委员会赋予了auto全新…

【MySQL | 第八篇】在MySQL中,如何定位慢查询以及对应解决方法?

文章目录 8.在MySQL中,如何定位慢查询以及对应解决方法?8.1MySQL慢查询日志8.1.1开启慢查询(1)修改配置文件(2)设置全局变量 8.1.2日志记录在表上(实践)8.1.3日志记录在文件上&#…

android studio 4.2.1运行java文件报错

当运行某个带main函数的java文件报这个错误的时候 Could not create task :app:Test.main(). > SourceSet with name main not found. 解决办法&#xff1a;在工程的.idea下的.gradlew.xml文件下添加 <option name"delegatedBuild" value"false"…

InternVL——GPT-4V 的开源替代方案

您的浏览器不支持 video 标签。 在人工智能领域&#xff0c;InternVL 无疑是一颗耀眼的新星。它被认为是最接近 GPT-4V 表现的可商用开源模型&#xff0c;为我们带来了许多惊喜。 InternVL 具备强大的功能&#xff0c;不仅能够处理图像和文本数据&#xff0c;还能精妙地理解…

基于H.264的RTP打包中的组合封包以及分片封包结构图简介及抓包分析

H.264视频流的RTP封装类型分析&#xff1a; 前言&#xff1a; NULL Hearder简介(结构如下)&#xff1a; ---------------|0|1|2|3|4|5|6|7|--------|F|NRI| Type |--------------- F&#xff1a;forbidden_zero_bit&#xff0c; 占1位&#xff0c;在 H.264 规范中规定了这…

Python数据分析大作业(ARIMA 自回归积分滑动平均模型) 4000+字 图文分析文档 销售价格库存分析+完整python代码

资源地址&#xff1a;Python数据分析大作业 4000字 图文分析文档 销售分析 完整python代码 完整代码分析 ​ 同时销售量后1000的sku品类占比中&#xff08;不畅销产品&#xff09;如上&#xff0c;精品类产品占比第一&#xff0c;达到66.7%&#xff0c;其次是香化类产品&#x…

【架构】后端项目如何分层及分层领域模型简化

文章目录 一. 如何分层1. 阿里规范2. 具体案例分析 二. 分层领域模型的转换1. 阿里规范2. 模型种类简化分析 三. 小结 本文描述后端项目中如何进行分层&#xff0c;以及分层领域模型简化 一. 如何分层 1. 阿里规范 阿里的编码规范中约束分层逻辑如下: 开放接口层&#xff1a…

Apache Seata基于改良版雪花算法的分布式UUID生成器分析1

title: Seata基于改良版雪花算法的分布式UUID生成器分析 author: selfishlover keywords: [Seata, snowflake, UUID] date: 2021/05/08 本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 Seata基于改良版雪花算法的分布式UUID生成器分析…

NLP(10)--TFIDF优劣势及其应用Demo

前言 仅记录学习过程&#xff0c;有问题欢迎讨论 TF*IDF&#xff1a; 优势&#xff1a; 可解释性好 可以清晰地看到关键词 即使预测结果出错&#xff0c;也很容易找到原因 计算速度快 分词本身占耗时最多&#xff0c;其余为简单统计计算 对标注数据依赖小 可以使用无标注语…

请编写函数fun,该函数的功能是:将放在字符串数组中的M个字符串(每串的长度不超过N),按顺序合并组成一个新的字符串。

本文收录于专栏:算法之翼 https://blog.csdn.net/weixin_52908342/category_10943144.html 订阅后本专栏全部文章可见。 本文含有题目的题干、解题思路、解题思路、解题代码、代码解析。本文分别包含C语言、C++、Java、Python四种语言的解法完整代码和详细的解析。 题干 请编…

React Router 路由配置数组配组持久化

在一些特定场景下,你可能需要将路由配置数组进行持久化,例如从后端动态加载路由配置或根据用户权限动态生成路由配置。这时,持久化路由配置数组就很有用,可以避免每次应用启动时重新获取或计算路由配置。 持久化路由配置数组的步骤如下: 定义路由配置数组 首先,你需要定义一…

[华为OD]C卷 找座位,在一个大型体育场内举办了一场大型活动,由于疫情防控的需要 100

题目&#xff1a; 在一个大型体育场内举办了一场大型活动&#xff0c;由于疫情防控的需要&#xff0c;要求每位观众的必须间隔至 少一个空位才允许落座。现在给出一排观众座位分布图Q,座位中存在已落座的观众&#xff0c;请计 算出&#xff0c;在不移动现有观众座位的情况…

从不同性别、年龄入手,发过的主题还能发!| NHANES数据库周报(4.24)

零基础NHANES挖掘培训班,欢迎咨询&#xff01; 课程 | 零基础两天掌握NHANES公共数据库挖掘技巧&#xff0c;发表SCI论文 美国国家健康和营养检查调查&#xff08;NHANES&#xff09;是一项旨在评估美国成人和儿童健康和营养状况的研究计划。该调查的独特之处在于它结合了访谈和…

Spring6 当中 获取 Bean 的四种方式

1. Spring6 当中 获取 Bean 的四种方式 文章目录 1. Spring6 当中 获取 Bean 的四种方式每博一文案1.1 第一种方式&#xff1a;通过构造方法获取 Bean1.2 第二种方式&#xff1a;通过简单工厂模式获取 Bean1.3 第三种方式&#xff1a;通过 factory-bean 属性获取 Bean1.4 第四种…

LT6911C HDMI 1.4 至 2 端口 MIPI DSI/CSI 龙迅方案

1. 描述LT6911C 是一款高性能 HDMI1.4 至 MIPIDSI/CSI/LVDS 芯片&#xff0c;适用于 VR/智能手机 / 显示应用。对于 MIPIDSI / CSI 输出&#xff0c;LT6911C 具有可配置的单端口或双端口 MIPIDSI/CSI&#xff0c;具有 1 个高速时钟通道和 1~4 个高速数据通道&#xff0c;工作速…

NFTScan | 04.22~04.28 NFT 市场热点汇总

欢迎来到由 NFT 基础设施 NFTScan 出品的 NFT 生态热点事件每周汇总。 周期&#xff1a;2024.04.22~ 2024.04.28 NFT Hot News 01/ ApeCoin DAO 发起「由 APE 代币支持的 NFT Launchpad」提案投票 4 月 22 日&#xff0c;ApeCoin DAO 社区发起「由 APE 代币支持的 NFT Launch…

JAVA基础——集合框架(List与Set)

数据结构 什么是数据结构 数据结构就是用来装数据以及数据与之间关系的一种集合。如何把相关联的数据存储到计算机&#xff0c;为后续的分析提供有效的数据源&#xff0c;是数据结构产生的由来。数据结构就是计算机存储、组织数据的方式。好的数据结构&#xff0c;让我们做起事…

Deckset for Mac激活版:MD文档转幻灯片软件

Deckset for Mac是一款专为Mac用户打造的Markdown文档转幻灯片软件。它凭借简洁直观的界面和强大的功能&#xff0c;成为许多用户的心头好。 Deckset for Mac激活版下载 Deckset支持Markdown语法&#xff0c;让用户在编辑文档时无需分心于复杂的格式设置&#xff0c;只需专注于…

分布式与一致性协议之Raft算法(二)

Raft算法 什么是任期 我们知道&#xff0c;议会选举中的领导者是有任期的&#xff0c;当领导者任命到期后&#xff0c;需要重新再次选举。Raft算法中的领导者也是有任期&#xff0c;每个任期由单调递增的数字(任期编号)标识。比如&#xff0c;节点A的任期编号是1。任期编号会…

Spark-机器学习(8)分类学习之随机森林

在之前的文章中&#xff0c;我们学习了分类学习之支持向量机决策树支持向量机&#xff0c;并带来简单案例&#xff0c;学习用法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&a…