【赠书活动第3期】《PyTorch 2.0深度学习从零开始学》

1. 赠书活动

《PyTorch 2.0深度学习从零开始学》免费赠书 5 本,

可在本帖评论中简单评论一下本书的优缺点,

或者在本帖评论中简单写一下你学习PyTorch想要达到什么目的,

博主从本帖评论中写得较好的朋友中选5人赠送。

截止日期为2024年5月31日之前。

博主及时本帖评论中通知受赠书朋友私信留快递信息,并快递出赠书。

2. 本期图书介绍

2.1 内容简介

PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中流行的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。

《PyTorch 2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。

2.2 本书适合的读者

  • 深度学习初学者
  • PyTorch 深度学习初学者
  • PyTorch深度学习项目开发人员学习
  • 高等院校或高职高专深度学习课程的学生。

2.3 作者简介

王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。著有《Python机器学习与可视化分析实战》《谷歌JAX深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow知识图谱实战》《TensorFlow人脸识别实战》《TensorFlow语音识别实战》《TensorFlow+Keras自然语言处理实战》《TensorFlow 2.0卷积神经网络实战》《Keras实战:基于TensorFlow2.2的深度学习实践》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》。

2.4 前言

PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络。它由Facebook的研究团队开发,并于2017年首次发布,从那时起,PyTorch迅速成为机器学习领域最受欢迎的框架之一。

PyTorch在学术界和产业界都得到了广泛的应用,被用于完成各种任务,例如图像分类、自然语言处理、目标检测等。在2019年,PyTorch被Google和OpenAI等机构评选为机器学习框架的首选,这也进一步证明了PyTorch在机器学习领域的重要性。

关于本书

本书是一本以PyTorch 2.0为框架的深度学习实战图书,以通俗易懂的方式介绍深度学习的基础内容与理论,并以项目实战的形式详细介绍PyTorch框架的使用。本书从单个API的使用,到组合架构完成进阶的项目实战,全面介绍使用PyTorch 2.0进行深度学习项目实战的核心技术和涉及的相关知识,内容丰富而翔实。

同时,本书不仅仅是一本简单的项目实战性质的图书,本书在讲解和演示实例代码的过程中,对PyTorch 2.0的核心内容进行深入分析,重要内容均结合代码进行实战讲解,围绕深度学习的基本原理介绍大量案例,读者通过这些案例可以深入掌握深度学习和PyTorch 2.0的相关技术及其应用,并能提升使用深度学习框架进行真实的项目实战的能力。

本书特点

(1)重实践,讲原理。本书立足于深度学习,以实战为目的,以新版的PyTorch 2.0为基础框架,详细介绍深度学习基本原理以及示例项目的完整实现过程,并提供可运行的全套示例代码,帮助读者在直接使用代码的基础上掌握深度学习的原理与应用方法。

(2)版本新,易入门。本书详细讲解PyTorch 2.0的安装和使用,包括PyTorch?2.0的重大优化和改进方案,以及官方默认使用的API和官方推荐的编程方法与技巧。

(3)作者经验丰富,代码编写优雅细腻。作者是长期奋战在科研和工业界的一线算法设计和程序编写人员,实战经验丰富,对代码中可能会出现的各种问题和“坑”有丰富的处理经验,使得读者能够少走很多弯路。

(4)理论扎实,深入浅出。在代码设计的基础上,本书还深入浅出地介绍深度学习需要掌握的一些基本理论知识,作者以大量的公式与图示相结合的方式进行理论讲解,是一本难得的好书。

(5)对比多种应用方案,实战案例丰富。本书采用了大量的实例,同时也提供了实现同类功能的多种解决方案,覆盖使用PyTorch 2.0进行深度学习开发常用的知识。

本书读者

  • 深度学习初学者
  • PyTorch初学者
  • PyTorch深度学习项目开发人员
  • 计算机技术、人工智能、智能科学与技术、数据科学与大数据技术等专业的师生

作  者

2023年5月

2.5 目录

第1章  PyTorch 2.0—一个新的开始 1
1.1  燎原之势的人工智能 1
1.1.1  从无到有的人工智能 1
1.1.2  深度学习与人工智能 2
1.1.3  应用深度学习解决实际问题 2
1.1.4  深度学习技术的优势和挑战 3
1.2  为什么选择PyTorch 2.0 4
1.2.1  PyTorch的前世今生 4
1.2.2  更快、更优、更具编译支持—PyTorch 2.0更好的未来 4
1.2.3  PyTorch 2.0学习路径—从零基础到项目实战 5
1.3  本章小结 6
第2章  Hello PyTorch 2.0—深度学习环境搭建 7
2.1  安装Python 7
2.1.1  Miniconda的下载与安装 7
2.1.2  PyCharm的下载与安装 10
2.1.3  Python代码小练习:计算Softmax函数 13
2.2  安装PyTorch 2.0 14
2.2.1  Nvidia 10/20/30/40系列显卡选择的GPU版本 15
2.2.2  PyTorch 2.0 GPU Nvidia运行库的安装—以CUDA 11.7+cuDNN 8.2.0为例 15
2.2.3  PyTorch 2.0小练习:Hello PyTorch 18
2.3  实战:基于PyTorch 2.0的图像去噪 18
2.3.1  MNIST数据集的准备 18
2.3.2  MNIST数据集的特征和标签介绍 20
2.3.3  模型的准备和介绍 21
2.3.4  模型的损失函数与优化函数 24
2.3.5  基于深度学习的模型训练 24
2.4  本章小结 26
第3章  基于PyTorch的MNIST分类实战 27
3.1  实战:基于PyTorch的MNIST手写体分类 27
3.1.1  数据图像的获取与标签的说明 27
3.1.2  模型的准备(多层感知机) 29
3.1.3  损失函数的表示与计算 30
3.1.4  基于PyTorch的手写体识别的实现 31
3.2  PyTorch 2.0模型结构输出与可视化 33
3.2.1  查看模型结构和参数信息 33
3.2.2  基于netron库的PyTorch 2.0模型可视化 34
3.2.3  更多的PyTorch 2.0模型可视化工具 37
3.3  本章小结 38
第4章  深度学习的理论基础 39
4.1  反向传播神经网络的历史 39
4.2  反向传播神经网络两个基础算法详解 43
4.2.1  最小二乘法详解 43
4.2.2  道士下山的故事—梯度下降算法 45
4.2.3  最小二乘法的梯度下降算法以及Python实现 48
4.3  反馈神经网络反向传播算法介绍 54
4.3.1  深度学习基础 54
4.3.2  链式求导法则 55
4.3.3  反馈神经网络的原理与公式推导 56
4.3.4  反馈神经网络原理的激活函数 61
4.3.5  反馈神经网络原理的Python实现 62
4.4  本章小结 66
第5章  基于PyTorch卷积层的MNIST分类实战 67
5.1  卷积运算的基本概念 68
5.1.1  基本卷积运算示例 68
5.1.2  PyTorch 2.0中卷积函数实现详解 70
5.1.3  池化运算 72
5.1.4  Softmax激活函数 73
5.1.5  卷积神经网络的原理 74
5.2  实战:基于卷积的MNIST手写体分类 76
5.2.1  数据准备 77
5.2.2  模型设计 77
5.2.3  基于卷积的MNIST分类模型 78
5.3  PyTorch 2.0的深度可分离膨胀卷积详解 80
5.3.1  深度可分离卷积的定义 81
5.3.2  深度的定义以及不同计算层待训练参数的比较 82
5.3.3  膨胀卷积详解 83
5.4  实战:基于深度可分离膨胀卷积的MNIST手写体识别 84
5.5  本章小结 86
第6章  PyTorch数据处理与模型可视化 87
6.1  用于自定义数据集的torch.utils.data工具箱使用详解 88
6.1.1  使用torch.utils.data.Dataset封装自定义数据集 88
6.1.2  改变数据类型的Dataset类中transform的使用 90
6.1.3  批量输出数据的DataLoader类详解 94
6.2  基于tensorboardX的训练可视化展示 97
6.2.1  tensorboardX的安装与简介 97
6.2.2  tensorboardX可视化组件的使用 97
6.2.3  tensorboardX对模型训练过程的展示 99
6.3  本章小结 102
第7章  从冠军开始—实战ResNet 103
7.1  ResNet基础原理与程序设计基础 103
7.1.1  ResNet诞生的背景 104
7.1.2  不要重复造轮子—PyTorch 2.0中的模块工具 106
7.1.3  ResNet残差模块的实现 107
7.1.4  ResNet网络的实现 109
7.2  实战ResNet:CIFAR-10数据集分类 112
7.2.1  CIFAR-10数据集简介 112
7.2.2  基于ResNet的CIFAR-10数据集分类 115
7.3  本章小结 117
第8章  梅西-阿根廷+巴西=?—有趣的Word Embedding 118
8.1  文本数据处理 119
8.1.1  数据集介绍和数据清洗 119
8.1.2  停用词的使用 121
8.1.3  词向量训练模型Word2Vec使用介绍 124
8.1.4  文本主题的提取:基于TF-IDF 127
8.1.5  文本主题的提取:基于TextRank 131
8.2  更多的Word Embedding方法—FastText和预训练词向量 133
8.2.1  FastText的原理与基础算法 134
8.2.2  FastText训练以及与PyTorch 2.0的协同使用 135
8.2.3  使用其他预训练参数生成PyTorch 2.0词嵌入矩阵(中文) 140
8.3  针对文本的卷积神经网络模型简介—字符卷积 141
8.3.1  字符(非单词)文本的处理 141
8.3.2  卷积神经网络文本分类模型的实现—Conv1d(一维卷积) 149
8.4  针对文本的卷积神经网络模型简介—词卷积 151
8.4.1  单词的文本处理 152
8.4.2  卷积神经网络文本分类模型的实现—Conv2d(二维卷积) 153
8.5  使用卷积实现文本分类的补充内容 156
8.6  本章小结 159
第9章  基于循环神经网络的中文情感分类实战 160
9.1  实战:循环神经网络与情感分类 160
9.1.1  基于循环神经网络的中文情感分类准备 161
9.1.2  基于循环神经网络的中文情感分类实现 163
9.2  循环神经网络理论讲解 165
9.2.1  什么是GRU 166
9.2.2  单向不行,那就双向 167
9.3  本章小结 168
第10章  从0起步—自然语言处理的编码器 169
10.1  编码器的核心—注意力模型 170
10.1.1  输入层—初始词向量层和位置编码器层 170
10.1.2  自注意力层(重点) 172
10.1.3  ticks和LayerNormalization 177
10.1.4  多头自注意力 178
10.2  编码器的实现 181
10.2.1  前馈层的实现 182
10.2.2  编码器的实现 183
10.3  实战编码器:汉字拼音转换模型 186
10.3.1  汉字拼音数据集处理 186
10.3.2  汉字拼音转换模型的确定 188
10.3.3  模型训练部分的编写 191
10.4  本章小结 193
第11章  站在巨人肩膀上的预训练模型BERT 194
11.1  预训练模型BERT 194
11.1.1  BERT的基本架构与应用 195
11.1.2  BERT预训练任务与Fine-Tuning 195
11.2  实战BERT:中文文本分类 198
11.2.1  使用Hugging Face获取BERT预训练模型 198
11.2.2  BERT实战文本分类 200
11.3  更多的预训练模型 204
11.4  本章小结 206
第12章  从1起步—自然语言处理的解码器 207
12.1  解码器的核心—注意力模型 207
12.1.1  解码器的输入和交互注意力层的掩码 208
12.1.2  为什么通过掩码操作能够减少干扰 213
12.1.3  解码器的输出(移位训练方法) 214
12.1.4  解码器的实现 215
12.2  实战解码器:汉字拼音翻译模型 217
12.2.1  数据集的获取与处理 218
12.2.2  翻译模型 220
12.2.3  汉字拼音模型的训练 230
12.2.4  汉字拼音模型的使用 231
12.3  本章小结 232
第13章  我也可以成为马斯克—无痛的基于PyTorch的强化学习实战 233
13.1  实战:基于强化学习的火箭回收 233
13.1.1  火箭回收技术基本运行环境介绍 234
13.1.2  火箭回收参数介绍 235
13.1.3  基于强化学习的火箭回收实战 236
13.1.4  强化学习的基本内容 241
13.2  强化学习的基本算法—PPO算法 246
13.2.1  PPO算法简介 246
13.2.2  函数使用说明 246
13.2.3  一学就会的TD-Error理论介绍 248
13.2.4  基于TD-Error的结果修正 250
13.2.5  对于奖励的倒序构成的说明 251
13.3  本章小结 252
第14章  创建你自己的小精灵—基于MFCC的语音唤醒实战 253
14.1  语音识别的理论基础—MFCC 253
14.2  语音识别的数据获取与准备 255
14.2.1  Speech Commands简介与数据说明 255
14.2.2  语音识别编码器模块与代码实现 258
14.3  实战:PyTorch 2.0语音识别 260
14.3.1  基于PyTorch 2.0的语音识别模型 260
14.3.2  基于PyTorch 2.0的语音识别实现 261
14.4  本章小结 262
第15章  基于PyTorch的人脸识别实战 263
15.1  人脸识别数据集的建立 263
15.1.1  LFW数据集简介 264
15.1.2  Dlib库简介 264
15.1.3  OpenCV简介 265
15.1.4  使用Dlib检测人脸位置 265
15.1.5  使用Dlib和OpenCV建立自己的人脸检测数据集 268
15.1.6  基于人脸定位制作适配深度学习的人脸识别数据集 270
15.2  实战:基于深度学习的人脸识别模型 274
15.2.1  人脸识别的基本模型Siamese Model 274
15.2.2  基于PyTorch 2.0的Siamese Model的实现 276
15.2.3  人脸识别的Contrastive Loss详解与实现 277
15.2.4  基于PyTorch 2.0的人脸识别模型 278
15.3  本章小结 280

3. 正版购买

京东购买链接

《PyTorch 2.0深度学习从零开始学(人工智能技术丛书)》(王晓华)【摘要 书评 试读】- 京东图书 (jd.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/582895.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

leetcode-有效括号序列-94

题目要求 思路 1.使用栈的先进后出的思路,存储前括号,如果st中有对应的后括号与之匹配就说明没问题 2.有两个特殊情况就是字符串第一个就是后括号,这个情况本身就是不匹配的,还有一种是前面的n个字符串本身是匹配的,这…

vue3插槽的name和v-slot的研究

slot可以分为具名插槽和默认,默认插槽name是default 在父组件的template需要些v-slot/#,没写不生效,而在父组件下,而没被template包含的默认放在template且含有#default. 1)没写slot,可以不写template,也可写default的template2)写了name的slot,即使是default也必须些template…

内外网隔离后 内网文件如何导出?

将内外网进行网络隔离后,内网文件如何导出?怎样确保安全的前提下,不影响业务的正常开展?这时候企业就需要采取安全且合规的方法来确保数据的安全性和防止未授权访问。 企业会采用的传统流程是:当文件由内网导出至外部时…

javaWeb项目-校园志愿者管理系统功能介绍

项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架:ssm、Springboot 前端:Vue、ElementUI 关键技术:springboot、SSM、vue、MYSQL、MAVEN 数据库工具:Navicat、SQLyog 1、SpringBoot框架 …

书生·浦语 大模型(学习笔记-8)Lagent AgentLego 智能体应用搭建

目录 一、智能体出现的原因 二、智能体的定义 三、智能体的组成 四、Lagent 五、AgentLego 六、实战一(Lagent) 环境配置及安装 安装依赖 准备 Tutorial Lagent Web Demo AgentLego 使用 图片推理(结果): …

Linux下启动jenkins报错问题解决

jenkins端口报错 java.io.IOException: Failed to start Jettyat winstone.Launcher.<init>(Launcher.java:209)at winstone.Launcher.main(Launcher.java:496)at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at java.base/jdk.int…

数据仓库实验二:关联规则挖掘实验

目录 一、实验目的二、实验内容和要求三、实验步骤1、创建数据库和表2、挖掘关联规则&#xff08;1&#xff09;新建一个 Analysis Services 项目 Sales&#xff08;2&#xff09;建立数据源视图&#xff08;3&#xff09;建立挖掘结构 Sales.dmm&#xff08;4&#xff09;部署…

(学习日记)2024.05.09:UCOSIII第六十三节:常用的结构体(os.h文件)第二部分

之前的章节都是针对某个或某些知识点进行的专项讲解&#xff0c;重点在功能和代码解释。 回到最初开始学μC/OS-III系统时&#xff0c;当时就定下了一个目标&#xff0c;不仅要读懂&#xff0c;还要读透&#xff0c;改造成更适合中国宝宝体质的使用方式。在学完野火的教程后&a…

Docker有哪些常见命令?什么是Docker数据卷?

喜欢就点击上方关注我们吧&#xff01; 哈喽&#xff0c;大家好呀&#xff01;这里是码农后端。上一篇我们介绍了Docker的安装以及腾讯云镜像加速源的配置。本篇将带你学习Docker的常见命令、数据卷及自定义镜像等相关知识。 1、什么是镜像与容器&#xff1f; 利用Docker安装应…

HarmonyOS编程实践系列:第一节 - 创建健康App欢迎页

系列文章目录 &#xff08;零&#xff09;鸿蒙HarmonyOS入门&#xff1a;如何配置环境&#xff0c;输出“Hello World“ &#xff08;一&#xff09;鸿蒙HarmonyOS开发基础 &#xff08;二&#xff09;鸿蒙HarmonyOS主力开发语言ArkTS-基本语法 &#xff08;三&#xff09;鸿蒙…

Web3的可持续性:构建环境友好的去中心化系统

引言 随着全球对可持续发展和环境问题的日益关注&#xff0c;Web3技术作为一种新型的互联网模式&#xff0c;也开始受到社区和开发者的关注。但很少有人关注到Web3对环境可持续性的潜在影响。本文将探讨Web3如何构建一个环境友好的去中心化系统&#xff0c;以及这如何促进一个…

Python_AI库 Pandas的时间序列操作详解

Python_AI库 Pandas的时间序列操作详解 本文默认读者具备以下技能&#xff1a; 熟悉python基础知识&#xff0c;vscode或其它编辑工具 了解pandas,matplotlib的基础操作 具备自主扩展学习能力 在数据分析和处理中&#xff0c;时间序列数据是一类常见且重要的数据类型。大量的…

瓦片编辑器成功移植到小熊猫C++ 2.25.1版本,解决_findnext移植问题

移植之后出现绿色屏幕闪退 查了版本回滚直到不闪退&#xff0c;发现是在读取自定义文件上出问题 然后在找读取自定义文件函数&#xff0c;发现是读取图片部分出问题 然后就卡住了 调试半天&#xff0c;不是数据溢出&#xff0c;于是就看 函数_findnext,网上搜 ———_findn…

Nutch库入门指南:利用Java编写采集程序,快速抓取北京车展重点车型

概述 在2024年北京车展上&#xff0c;电动汽车成为全球关注的焦点之一。这一事件不仅吸引了全球汽车制造商的目光&#xff0c;也突显了中国市场在电动汽车领域的领先地位。117台全球首发车的亮相&#xff0c;其中包括30台跨国公司的全球首发车和41台概念车&#xff0c;彰显了中…

协程——uthread学习

协程——uthread学习 uthread说明细节 uthread代码 ucontext-人人都可以实现的简单协程库 github地址 vscode c调试环境搭建 程序员应如何理解协程 在此记录一下协程的基本概念&#xff0c;后续再考虑实现手写的协程。 uthread说明 一个简单的C用户级线程&#xff08;协程&am…

解决Could not locate zlibwapi.dll. Please make sure it is in your library path问题

nvidia官网已经下架了zlibwapi.dll的下载链接&#xff0c;可以按照下面方法。 1、在windows目录C:\Program Files\Microsoft Office\root\Office16\ODBC Drivers\Salesforce\lib下找到zlibwapi.dll文件 (如果下载不到可通过百度云) 链接&#xff1a;https://pan.baidu.com/s…

宝塔面板自定义设置告警通知webhook接口推送内容

前提 为了能够使用宝塔面板的自定义推送webhook对接到自己的推送系统&#xff0c;特意修改面板代码来支持自定义的推送系统。 环境 宝塔&#xff1a;Linux面板8.1.0 效果 步骤 主要修改文件路径如下 /www/server/panel/class/msg/web_hook_msg.py 源文件地址 完整文件链…

如何解决Edge浏览器显示“你的组织浏览器已托管”,导致无法正常打开网页问题?

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

[ACTF2020 新生赛]BackupFile 1 [极客大挑战 2019]BuyFlag 1 [护网杯 2018]easy_tornado 1

目录 [ACTF2020 新生赛]BackupFile 1 1.打开页面&#xff0c;叫我们去找源文件 2.想到用disearch扫描&#xff0c;发现源文件index.php.bak 3.访问这个文件&#xff0c;下载一个文件&#xff0c;用记事本打开 4.翻译php代码 5.构造payload url/?key123&#xff0c;得到fl…

《与 Apollo 共创生态:我和 Apollo 7周年大会的心路历程》

目录 前言7周年大会开放协同写在最后 前言 Apollo开放平台的企业生态计划是一个激动人心的举措&#xff0c;它展现了Apollo团队长期以来的努力和成就。通过与全球开发者和合作伙伴的紧密合作&#xff0c;Apollo开放平台已经成为一个创新和技术交流的重要平台。企业生态计划的推…