弹性网络回归(概念+实例)

目录

前言

一、基本概念

1. 弹性网络回归的原理

2. 弹性网络回归的优点

3. 弹性网络回归的应用

4. 弹性网络回归的调参

二、实例


前言

弹性网络回归(Elastic Net Regression)是一种用于处理回归问题的机器学习算法,它结合了岭回归(Ridge Regression)和Lasso回归(Least Absolute Shrinkage and Selection Operator Regression)的优点。弹性网络回归在应对高维数据和具有多重共线性的特征时表现出色,它可以有效地减少模型的过拟合,并在存在高度相关的特征时保持稳定性。

一、基本概念

1. 弹性网络回归的原理

2. 弹性网络回归的优点

弹性网络回归相比于岭回归和Lasso回归具有以下优点:

  • 解决多重共线性问题:当特征之间存在高度相关性时,Lasso回归会倾向于随机选择其中一个特征,而弹性网络回归通过L2正则化可以保留一组相关特征。
  • 稳定性:弹性网络回归在处理高维数据时表现更稳定,相比于Lasso回归更不容易受到特征选择的影响。
  • 适用于大数据集:弹性网络回归的计算复杂度较低,相比于Lasso回归在处理大数据集时更有效率。

3. 弹性网络回归的应用

弹性网络回归在各种领域都有广泛的应用,包括但不限于:

  • 金融领域:用于预测股票价格、汇率变动等。
  • 医学领域:用于预测疾病风险、药物反应等。
  • 工程领域:用于预测建筑物的结构稳定性、材料性能等。
  • 生态学:用于分析环境因素对生物多样性的影响。
  • 社会科学:用于分析人口统计数据和社会经济因素的关系。

4. 弹性网络回归的调参

在实际应用中,需要通过交叉验证等方法来选择合适的超参数 α 和 ρ。通常情况下,可以使用网格搜索或随机搜索来寻找最佳的超参数组合,以最小化验证集上的误差。

二、实例

我们首先使用make_regression函数生成了一个简单的线性数据集。然后,我们将数据集分割成训练集和测试集。接着,我们创建了一个ElasticNet对象,并调用fit方法拟合训练数据。最后,我们使用测试集进行预测,并计算了预测结果的均方误差(MSE)。最后,我们绘制了实际数据和模型拟合线的散点图,以可视化模型的性能。

代码:

# 导入所需的库
import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

# 设置全局中文字体
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

# 生成模拟数据
X, y = make_regression(n_samples=100, n_features=1, noise=20, random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并拟合弹性网络回归模型
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)  # 设置alpha和l1_ratio参数
elastic_net.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = elastic_net.predict(X_test)

# 计算均方误差(MSE)
mse = mean_squared_error(y_test, y_pred)
print("均方误差(MSE):", mse)

# 绘制模型拟合结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test, y_test, color='blue', label='实际数据')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='弹性网络回归拟合线')
plt.title('弹性网络回归示例')
plt.xlabel('特征')
plt.ylabel('目标')
plt.legend()
plt.show()

结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/581552.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter05:配置环境变量

1 Jmeter 环境 1.1 什么是环境变量?path什么用? 系统设置之一,通过设置PATH,可以让程序在DOS命令行直接启动 1.2 path怎么用 如果想让一个程序可以在DOS直接启动,需要将该程序目录配置进PATH 1.3 PATH和我们的关系…

基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

效果视频链接:基于深度学习光伏预测系统(五个模型)_哔哩哔哩_bilibili 界面设计 注册界面 登录界面 主界面 展示界面 1.数据集来源 The SOLETE dataset 这里分别保存了不同间隔采样时间表格 1min是以1min 间隔采集的数据集 数据集截图&…

测算sample gpt

测算代码 import pandas as pd import matplotlib.pyplot as pltlosspd.read_pickle("loss_8.pkl") plt.plot(loss) losspd.read_pickle("loss_16.pkl") plt.plot(loss) losspd.read_pickle("loss_4_8.pkl") plt.plot(loss) losspd.read_pickle(…

因泰立科技交付宁波北收费站激光车辆检测器,实现车辆的精准分离

因泰立科技交付宁波北收费站ETC收费系统所需激光车辆检测器,实现车辆的精准分离,助力高速公路更加畅通、便捷。 此次交付的是因泰立科技的爆款产品:ILS-E20-3 激光车辆检测器,可以单侧安装,避免破地等大量工程安装工作…

利用Triple U.Net结构对冷冻切片HE染色组织学图像进行核实例分割

利用Triple U.Net结构对冷冻切片H&E染色组织学图像进行核实例分割 摘要IntroductionRelated WorksDatasetProposed MethodologyDataset PreparationSegmentation BranchLoss FunctionWatershed Algorithm Nuclei Instance Segmentation of Cryosectioned H&E Stained H…

【人工智能基础】逻辑回归实验分析

实验环境:anaconda、jutpyter Notebook 实验使用的库:numpy、matplotlib 一、逻辑回归 逻辑回归是一个常用于二分类的分类模型。本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。 二、实验准备 引入库、预设值…

C++-DAY5

有以下类&#xff0c;完成特殊成员函数 #include <iostream>using namespace std; class Person {string name;int *age; public://有参构造Person(string name,int age):name(name),age(new int(age)){}//析构函数~Person(){delete age;}//拷贝构造Person(const Person …

FreeRTOS-系统时钟节拍和时间管理

一、前言 任何操作系统都需要提供一个时钟节拍&#xff0c;以供系统处理诸如延时&#xff0c;超时等与时间相关的事件。时钟节拍是特定的周期性中断&#xff0c; 这个中断可以看做是系统心跳。 中断之间的时间间隔取决于不同的应用&#xff0c;一般是 1ms – 100ms。时钟的节拍…

GQA分组注意力机制

一、目录 定义demo 二、实现 定义 grouped query attention&#xff08;GQA&#xff09; 1 GQA 原理与优点&#xff1a;将query 进行分组&#xff0c;每组query 参数共享一份key,value, 从而使key, value 矩阵变小。 2. 优点&#xff1a; 降低内存读取模型权重的时间开销&am…

无缝迁移:从阿里云WAF到AWS的成功转变之路

在当今数字化浪潮中&#xff0c;网络安全已经成为企业发展的重要组成部分。阿里云WAF&#xff08;Web 应用防火墙&#xff09;作为一种重要的网络安全解决方案&#xff0c;帮助企业保护其 Web 应用免受各种网络攻击。 然而&#xff0c;随着企业业务的扩展和需求的变化&#xf…

可替代IBM DOORS的现代化需求管理解决方案Jama Connect,支持数据迁移及重构、实时可追溯性、简化合规流程

作为一家快速发展的全球性公司&#xff0c;dSPACE一直致力于寻找保持领先和优化开发流程的方法。为推进其全球现代化计划&#xff0c;dSPACE开始寻找可以取代传统需求管理平台&#xff08;IBM DOORS&#xff09;的需求管理解决方案。 通过本次案例&#xff0c;您将了解dSPACE为…

数据结构-简单队列

1.简介 队列为一个有序列表&#xff0c;可以用数组或链表来实现。 先进先出原则。先存入队列的数据先取出&#xff0c;后存进队列的数据后取出。 这里对比一下&#xff0c;栈是后来者居上 下面使用数组来模拟队列&#xff0c;用数组的结构来存储队列的数据&#xff1a; Que…

Stable Diffusion教程:额外功能/后期处理/高清化

"额外功能"对应的英文单词是Extras&#xff0c;算是直译。但是部分版本中的翻译是“后期处理”或者“高清化”&#xff0c;这都是意译&#xff0c;因为它的主要功能是放大图片、去噪、修脸等对图片的后期处理。注意这里边对图片的处理不是 Stable Diffusion 本身的能…

微软开源了 MS-DOS 4.00

DOS的历史源远流长&#xff0c;很多现在的年轻人不知道DOS了。其实早期的windows可以看做是基于DOS的窗口界面的模拟器&#xff0c;系统的本质其实是DOS。后来DOS的漏洞还是太多了&#xff0c;微软重新写了windows的底层内核。DOS只是一个辅助终端的形式予以保留了。 微软是在…

FreeRTOS学习——FreeRTOS队列(上)

本篇文章记录我学习FreeRTOS队列的相关知识&#xff0c;主要包括队列简介、队列的结构体、队列创建等知识。 队列是为了任务与任务、任务与中断之间的通信而准备的&#xff0c;可以在任务与任务、任务与中断之间传递消息&#xff0c;队列中可以存储有限的、大小固定的数据项目。…

大白菜启动U盘想格式化但格式化不了

部分区域被修改分区表保护起来了。直接格式化的话&#xff0c;里面的文件夹都还在。根本格式化不了。特别是可用容量并未还原出来。 进入计算机管理》磁盘管理&#xff0c;看到U盘盘符。别搞错了。删除掉里面的已经分的区域和未分区区域&#xff0c;让它还原成一个整体。退出。…

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测

分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现POA-BP鹈鹕算法优化BP神经网络多特征分类预测&#xff08;Matlab实…

javaweb学习week6

javaweb学习 九.登录认证 5.登录后下发令牌 生成令牌&#xff1a;引入JWT令牌操作工具类&#xff0c;登录完成后&#xff0c;调用工具类生成JWT令牌&#xff0c;并返回 代码实例&#xff1a; 6.Filter入门 概念&#xff1a;Filter过滤器&#xff0c;是Javaweb三大组件之一…

在STM32上实现无线传感器网络节点

引言 无线传感器网络&#xff08;WSN&#xff09;是物联网&#xff08;IoT&#xff09;技术的关键组成部分&#xff0c;广泛应用于环境监测、智能建筑、精密农业等领域。 本教程将介绍如何在STM32微控制器上设计和实现一个无线传感器网络节点&#xff0c;包括硬件选择、网络协…

企业计算机服务器中了helper勒索病毒怎么办?Helper勒索病毒解密处理流程

网络技术的不断发展与成熟&#xff0c;为企业的生产运营提供了极大便利&#xff0c;让企业的发展速度大大提升&#xff0c;但网络毕竟是虚拟服务系统&#xff0c;虽然可以为企业提供便利&#xff0c;但也会给企业数据安全带来严重威胁。近日&#xff0c;云天数据恢复中心接到山…