前言
Android中SharedPreferences已经广为诟病,它虽然是Android SDK中自带的数据存储API,但是因为存在设计上的缺陷,在处理大量数据时很容易导致UI线程阻塞或者ANR,Android官方最终在Jetpack库中提供了DataStore解决方案,用来替代SharedPreferences。
总结起来,SharedPreferences有以下几个缺点:
- 在初始化SharedPreferences对象时,会将文件中所有数据都读取到内存,非常浪费内存,并且是同步操作,如果在主线程中操作就会导致页面启动慢或者卡顿问题。
- 在调用SharedPreferences对象的edit()方法时会一直阻塞直到数据从磁盘上读取完毕。
- 每次调用apply和commit都会将内存的数据一并同步到磁盘,影响性能。
- 在调用Activity和Service的生命周期时,会阻塞等待SP数据写出完毕,因此导致页面出现卡顿甚至ANR。
下面来从源码的设计角度来深入分析一下这些问题存在的根源。
笔者原创,转载请注明出处:https://blog.csdn.net/devnn/article/details/138086118
本文基于Android 30源码。
SharedPreferences的初始化
一般我们会使用context的getSharedPreferences(String name, int mode)
方法获取一个SharedPreferences
对象,而context一般直接使用当前Activity对象。Activity虽然继承了Context但其实它是一个代理Context,真实的Context是通过attachBaseContext
方法传入的,实际上就是ContextImpl
。对这个不熟悉的同学可以去看看ActivityThread
中Activity创建过程。
我们看看ContextImpl中getSharedPreferences
方法是如何实现的。
//android.app.ContextImpl
@Override
public SharedPreferences getSharedPreferences(File file, int mode) {
SharedPreferencesImpl sp;
synchronized (ContextImpl.class) {
final ArrayMap<File, SharedPreferencesImpl> cache = getSharedPreferencesCacheLocked();
sp = cache.get(file);
if (sp == null) {
checkMode(mode);
if (getApplicationInfo().targetSdkVersion >= android.os.Build.VERSION_CODES.O) {
if (isCredentialProtectedStorage()
&& !getSystemService(UserManager.class)
.isUserUnlockingOrUnlocked(UserHandle.myUserId())) {
throw new IllegalStateException("SharedPreferences in credential encrypted "
+ "storage are not available until after user is unlocked");
}
}
sp = new SharedPreferencesImpl(file, mode);
cache.put(file, sp);
return sp;
}
}
if ((mode & Context.MODE_MULTI_PROCESS) != 0 ||
getApplicationInfo().targetSdkVersion < android.os.Build.VERSION_CODES.HONEYCOMB) {
// If somebody else (some other process) changed the prefs
// file behind our back, we reload it. This has been the
// historical (if undocumented) behavior.
sp.startReloadIfChangedUnexpectedly();
}
return sp;
}
这里从缓存中取出SharedPreferencesImpl对象,缓存没有会新建一个SharedPreferencesImpl:
//android.app.SharedPreferencesImpl
SharedPreferencesImpl(File file, int mode) {
mFile = file;
mBackupFile = makeBackupFile(file);
mMode = mode;
mLoaded = false;
mMap = null;
mThrowable = null;
startLoadFromDisk();
}
private void startLoadFromDisk() {
synchronized (mLock) {
mLoaded = false;
}
new Thread("SharedPreferencesImpl-load") {
public void run() {
loadFromDisk();
}
}.start();
}
构建SharedPreferencesImpl会在子线程中读取xml文件,同时将标记位mLoaded置为了false。
//android.app.SharedPreferencesImpl
private void loadFromDisk() {
synchronized (mLock) {
if (mLoaded) {
return;
}
if (mBackupFile.exists()) {
mFile.delete();
mBackupFile.renameTo(mFile);
}
}
// Debugging
if (mFile.exists() && !mFile.canRead()) {
Log.w(TAG, "Attempt to read preferences file " + mFile + " without permission");
}
Map<String, Object> map = null;
StructStat stat = null;
Throwable thrown = null;
try {
stat = Os.stat(mFile.getPath());
if (mFile.canRead()) {
BufferedInputStream str = null;
try {
str = new BufferedInputStream(
new FileInputStream(mFile), 16 * 1024);
map = (Map<String, Object>) XmlUtils.readMapXml(str);
} catch (Exception e) {
Log.w(TAG, "Cannot read " + mFile.getAbsolutePath(), e);
} finally {
IoUtils.closeQuietly(str);
}
}
} catch (ErrnoException e) {
// An errno exception means the stat failed. Treat as empty/non-existing by
// ignoring.
} catch (Throwable t) {
thrown = t;
}
synchronized (mLock) {
mLoaded = true;
mThrowable = thrown;
// It's important that we always signal waiters, even if we'll make
// them fail with an exception. The try-finally is pretty wide, but
// better safe than sorry.
try {
if (thrown == null) {
if (map != null) {
mMap = map;
mStatTimestamp = stat.st_mtim;
mStatSize = stat.st_size;
} else {
mMap = new HashMap<>();
}
}
// In case of a thrown exception, we retain the old map. That allows
// any open editors to commit and store updates.
} catch (Throwable t) {
mThrowable = t;
} finally {
mLock.notifyAll();
}
}
}
读取xml文件完成之后获取mLock对象锁,然后将mLoaded
置为true,最后将WaitSet队列中的阻塞线程唤醒。
笔者原创,转载请注明出处:https://blog.csdn.net/devnn/article/details/138086118
SharedPreferences的edit方法
//android.app.SharedPreferencesImpl
@Override
public Editor edit() {
// TODO: remove the need to call awaitLoadedLocked() when
// requesting an editor. will require some work on the
// Editor, but then we should be able to do:
//
// context.getSharedPreferences(..).edit().putString(..).apply()
//
// ... all without blocking.
synchronized (mLock) {
awaitLoadedLocked();
}
return new EditorImpl();
}
获取mLock
的锁,这里如果子线程读取xml时未释放锁,这时就会阻塞等待,如果比子线程先获取锁,也会阻塞直到子线程读取完毕。看awaitLoadedLocked
方法:
//android.app.SharedPreferencesImpl
@GuardedBy("mLock")
private void awaitLoadedLocked() {
if (!mLoaded) {
// Raise an explicit StrictMode onReadFromDisk for this
// thread, since the real read will be in a different
// thread and otherwise ignored by StrictMode.
BlockGuard.getThreadPolicy().onReadFromDisk();
}
while (!mLoaded) {
try {
mLock.wait();
} catch (InterruptedException unused) {
}
}
if (mThrowable != null) {
throw new IllegalStateException(mThrowable);
}
}
可以看到一个while循环,当mLoaded字段为false时就会阻塞当前线程,直到被唤醒。
从以上获取SharedPreferences对象然后调用edit方法的过程,一般我们都会在onCreate中或者控件onClick中获取sp数据,因为可以得出结论:
在主线程中获取SharedPreferences.Editor,必须等待xml文件所有数据读取完毕才会进行后续操作
,如果xml中数据越多,那么主线程等待的时间就会越长。
Editor.apply方法
//android.app.SharedPreferencesImpl
public void apply() {
final long startTime = System.currentTimeMillis();
final MemoryCommitResult mcr = commitToMemory();
final Runnable awaitCommit = new Runnable() {
@Override
public void run() {
try {
mcr.writtenToDiskLatch.await();
} catch (InterruptedException ignored) {
}
if (DEBUG && mcr.wasWritten) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " applied after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
};
QueuedWork.addFinisher(awaitCommit);
Runnable postWriteRunnable = new Runnable() {
@Override
public void run() {
awaitCommit.run();
QueuedWork.removeFinisher(awaitCommit);
}
};
SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
// Okay to notify the listeners before it's hit disk
// because the listeners should always get the same
// SharedPreferences instance back, which has the
// changes reflected in memory.
notifyListeners(mcr);
}
先调用commitToMemory
方法将需要修改的数据封装到了MemoryCommitResult
类型的对象mcr
中:
//android.app.SharedPreferencesImpl
// Returns true if any changes were made
private MemoryCommitResult commitToMemory() {
long memoryStateGeneration;
boolean keysCleared = false;
List<String> keysModified = null;
Set<OnSharedPreferenceChangeListener> listeners = null;
Map<String, Object> mapToWriteToDisk;
synchronized (SharedPreferencesImpl.this.mLock) {
// We optimistically don't make a deep copy until
// a memory commit comes in when we're already
// writing to disk.
if (mDiskWritesInFlight > 0) {
// We can't modify our mMap as a currently
// in-flight write owns it. Clone it before
// modifying it.
// noinspection unchecked
mMap = new HashMap<String, Object>(mMap);
}
mapToWriteToDisk = mMap;
mDiskWritesInFlight++;
boolean hasListeners = mListeners.size() > 0;
if (hasListeners) {
keysModified = new ArrayList<String>();
listeners = new HashSet<OnSharedPreferenceChangeListener>(mListeners.keySet());
}
synchronized (mEditorLock) {
boolean changesMade = false;
if (mClear) {
if (!mapToWriteToDisk.isEmpty()) {
changesMade = true;
mapToWriteToDisk.clear();
}
keysCleared = true;
mClear = false;
}
for (Map.Entry<String, Object> e : mModified.entrySet()) {
String k = e.getKey();
Object v = e.getValue();
// "this" is the magic value for a removal mutation. In addition,
// setting a value to "null" for a given key is specified to be
// equivalent to calling remove on that key.
if (v == this || v == null) {
if (!mapToWriteToDisk.containsKey(k)) {
continue;
}
mapToWriteToDisk.remove(k);
} else {
if (mapToWriteToDisk.containsKey(k)) {
Object existingValue = mapToWriteToDisk.get(k);
if (existingValue != null && existingValue.equals(v)) {
continue;
}
}
mapToWriteToDisk.put(k, v);
}
changesMade = true;
if (hasListeners) {
keysModified.add(k);
}
}
mModified.clear();
if (changesMade) {
mCurrentMemoryStateGeneration++;
}
memoryStateGeneration = mCurrentMemoryStateGeneration;
}
}
return new MemoryCommitResult(memoryStateGeneration, keysCleared, keysModified,
listeners, mapToWriteToDisk);
}
这个方法主要是更新之前从xml中加载到内存的mMap集合,哪些字段被修改了就更新一下。
回到apply方法。
apply方法将要修改的数据包装成mcr,然后将mcr.writtenToDiskLatch.await
方法封装成了Runnable,并添加到了QueuedWork
当中,这一步很关键,后面再分析。
然后又创建了一个Runnable用来执行前面这个Runnable…
然后调用SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable)
将mcr和postWriteRunnable传给了enqueueDiskWrite
方法。
//android.app.SharedPreferencesImpl
private void enqueueDiskWrite(final MemoryCommitResult mcr,
final Runnable postWriteRunnable) {
final boolean isFromSyncCommit = (postWriteRunnable == null);
final Runnable writeToDiskRunnable = new Runnable() {
@Override
public void run() {
synchronized (mWritingToDiskLock) {
writeToFile(mcr, isFromSyncCommit);
}
synchronized (mLock) {
mDiskWritesInFlight--;
}
if (postWriteRunnable != null) {
postWriteRunnable.run();
}
}
};
// Typical #commit() path with fewer allocations, doing a write on
// the current thread.
if (isFromSyncCommit) {
boolean wasEmpty = false;
synchronized (mLock) {
wasEmpty = mDiskWritesInFlight == 1;
}
if (wasEmpty) {
writeToDiskRunnable.run();
return;
}
}
QueuedWork.queue(writeToDiskRunnable, !isFromSyncCommit);
}
这个方法又创建了一个Runnable类型的writeToDiskRunnable
,writeToDiskRunnable
先执行写出操作再调用传进来的Runnable,然后判断是否是同步执行还是异步操作,同步执行直接在当前线程执行writeToDiskRunnable
,异步的话将其丢进QueuedWork中,因为apply是异步,因此我们继承看QueuedWork.queue
方法。
//android.app.QueuedWork
public static void queue(Runnable work, boolean shouldDelay) {
Handler handler = getHandler();
synchronized (sLock) {
sWork.add(work);
if (shouldDelay && sCanDelay) {
handler.sendEmptyMessageDelayed(QueuedWorkHandler.MSG_RUN, DELAY);
} else {
handler.sendEmptyMessage(QueuedWorkHandler.MSG_RUN);
}
}
}
该方法比较简单,主要是将传进来的任务放进了sWork
队列中,然后发送消息将工作线程唤醒执行队列中的任务。
//android.app.QueuedWork
private static class QueuedWorkHandler extends Handler {
static final int MSG_RUN = 1;
QueuedWorkHandler(Looper looper) {
super(looper);
}
public void handleMessage(Message msg) {
if (msg.what == MSG_RUN) {
processPendingWork();
}
}
}
继续看processPendingWork
做了什么。
//android.app.QueuedWork
private static void processPendingWork() {
long startTime = 0;
if (DEBUG) {
startTime = System.currentTimeMillis();
}
synchronized (sProcessingWork) {
LinkedList<Runnable> work;
synchronized (sLock) {
work = (LinkedList<Runnable>) sWork.clone();
sWork.clear();
// Remove all msg-s as all work will be processed now
getHandler().removeMessages(QueuedWorkHandler.MSG_RUN);
}
if (work.size() > 0) {
for (Runnable w : work) {
w.run();
}
if (DEBUG) {
Log.d(LOG_TAG, "processing " + work.size() + " items took " +
+(System.currentTimeMillis() - startTime) + " ms");
}
}
}
}
很简单,就是将sWork
克隆一份,将原来的sWork
清空,for循环执行克隆队列中的任务。
到这里apply流程已经分析完毕,主要就是先更新mMap中的数据,然后放到工作线程中执行IO写出操作。
QueuedWork.waitToFinish方法
但是之前调用 QueuedWork.addFinisher(awaitCommit)
是做什么的呢?看代码是要等待写出完毕操作,在哪里等待呢?
//android.app.QueuedWork
public static void waitToFinish() {
long startTime = System.currentTimeMillis();
boolean hadMessages = false;
Handler handler = getHandler();
synchronized (sLock) {
if (handler.hasMessages(QueuedWorkHandler.MSG_RUN)) {
// Delayed work will be processed at processPendingWork() below
handler.removeMessages(QueuedWorkHandler.MSG_RUN);
if (DEBUG) {
hadMessages = true;
Log.d(LOG_TAG, "waiting");
}
}
// We should not delay any work as this might delay the finishers
sCanDelay = false;
}
StrictMode.ThreadPolicy oldPolicy = StrictMode.allowThreadDiskWrites();
try {
processPendingWork();
} finally {
StrictMode.setThreadPolicy(oldPolicy);
}
try {
while (true) {
Runnable finisher;
synchronized (sLock) {
finisher = sFinishers.poll();
}
if (finisher == null) {
break;
}
finisher.run();
}
} finally {
sCanDelay = true;
}
synchronized (sLock) {
long waitTime = System.currentTimeMillis() - startTime;
if (waitTime > 0 || hadMessages) {
mWaitTimes.add(Long.valueOf(waitTime).intValue());
mNumWaits++;
if (DEBUG || mNumWaits % 1024 == 0 || waitTime > MAX_WAIT_TIME_MILLIS) {
mWaitTimes.log(LOG_TAG, "waited: ");
}
}
}
}
QueuedWork.waitToFinish
方法即是阻塞当前线程等待apply写出任务完毕。
这个方法先是清空handler
的中的消息,然后直接在当前线程执行processPendingWork
方法,接着遍历之前addFinisher
添加进来的任务进行执行。看这情况,相当于如果之前调用apply方法在工作线程中执行的队列任务中还有未完成的就不让它执行,并且将这些任务拿到当前线程进行执行,同时阻塞当前线程等待工作线程中任务执行完毕!
好家伙,相当于强行接管了工作线程中的后续任务,自己亲自来执行,同时等待当前工作线程正在执行的任务执行完毕。
那么QueuedWork.waitToFinish
在哪里调用的呢?经过分析是在ActivityThread
中执行组件生命周期函数前后:
这个地方是先执行Activity的onPause
方法,然后如果系统小于Android 11则执行QueuedWork.waitToFinish
,否则不执行QueuedWork.waitToFinish
。看来现在市面上的机型基本在onStop不执行这个方法。
这个地方先执行Activity的onStop方法,然后如果系统大于Android 11则执行QueuedWork.waitToFinish
,否则不执行QueuedWork.waitToFinish
。看来现在市面上的机型基本会在onStop之后执行这个方法。
这个地方是先执行Service的onStartCommand方法,然后执行QueuedWork.waitToFinish
。
这个地方是先执行Service的onDetroy方法,然后执行QueuedWork.waitToFinish
。
经过对SP的apply方法分析可以看出,它是一个异步操作,并且会将sp文件中所有数据一并写出,如果只有一个字段更新,它也会将这些数据写出到磁盘。另外,如果页面即将要关闭,还会阻塞主线程直到sp数据写出完毕。很显然,当sp中数据量很大或者apply操作频繁调用,很容易引发主线程长时间阻塞甚至ANR。
笔者原创,转载请注明出处:https://blog.csdn.net/devnn/article/details/138086118