java 数组的使用

数组

基本介绍

数组可以存放多个同一类型的数据,数组也是一种数据类型,是引用类型。

即:数组就是一组数据。

数组的使用

在这里插入图片描述

1、数组的定义

方法一 -> 单独声明
数据类型[] 数组名 = new 数据类型[大小]
说明:int[] a = new int[5]; //创建一个数组,名字a,存放5个int。没有具体数据,默认值为0

方法一 -> 单独声明
单独声明: new 类型[]{1,2,3,4};  -> new int[]{1,2,3,4,5}; 

方法二: -> 先声明,再new
int[] a;   //先声明
a = new int[5]; // 再new

方法三 静态初始化:
数据类型 数组名[] = {元素值,元素值...}
int[] a = {2,3,4,5,6,7}

声明空数组: new int[0]
//上面指定数字的,都是赋默认值,只有大括号中的,才是真正的赋值。


// 方式一:
int[] x = new int[3];
// 方式二:
int[] y;
y = new int[3];
// 方式三:
int[] z = new int[]{1, 2, 3, 4, 5, 6};
// 方式四:
int[] a = {13, 2, 3, 32, 325, 13, 25};

2、数组的引用

数组名[下标/索引]

注意细节

1、数组是多个相同数据类型的组合,实现对这些数据的同意管理。【或者满足自动转换】

double[] array1 = {1.1, 2.2, 3.3, 4};  // 4可以自动转换为小数。   

2、数组中的元素可以是任何数据类型,包括基本类型和引用类型。但是不能混用。

3、数组创建后,如果没有赋值,则有默认值。

int、short、byte、long: 0

boolean: flase

String:null

float、double: 0.0

char:\u0000

4、数组的下标是从 0 开始的。

5、数组的下标必须在范围内调用。否则报:下标越界异常

6、数组是引用类型,数组型数据是对象(object)

数组赋值机制

1、基本数据类型赋值,这个值是具体的数据,而且相互不影响,赋的是值。

2、数组在默认情况下是引用传递,赋的值是地址。

值传递/值拷贝 和 引用传递/地址拷贝 的区别在这里插入图片描述

数据拷贝

public class Array01{
	public static void main(String[] args){
		int[] arr1 = {10, 20, 30};
		// 1、创建一个新的数组arr2,开辟新的空间,大小为arr1.length
		int[] arr2 = new int[arr1.length];
		for (int i=1; i<arr2.length; i++) {
			arr2[i] = arr1[i];
		}

		arr2[0] = 100;//修改arr2不会对arr1产生影响
		for (int i=0; i<arr2.length; i++) {
			System.out.println(arr2[i]);
			
		}
	}
}

数组反转

将数组中的元素前后转换

public class Array01{
	public static void main(String[] args){
		int[] arr1 = {11,22,33,44,55,66,77};

		int len = arr1.length;
		for (int i=0; i <= len/2-1; i++) {
			int temp = arr1[i];
			arr1[i] = arr1[len-1-i];
			arr1[len-1-i] = temp;
		}
      
		for (int i=0; i<len; i++) {
			System.out.println(arr1[i]);
		}
	}
}

总结:这种反转的,从中间往两边扩的问题,全部的中间判断都是 i<(arr.length / 2)

数组添加

实现动态的给数组添加元素,实现对数组的扩容

1、原始数组使用静态分配: int[] arr = {1,2,3};

2、增加元素,直接放在数组的最后:arr = {1,2,3,4}

3、用户可以通过如下方法来决定是否继续添加。添加成功,是否继续添加? Y\N

import java.util.Scanner;
public class Array01{
	public static void main(String[] args){
		int[] arr1 = {1,2,3};

		while(true){
			System.out.println("是否添加? y/n");
			Scanner myScanner = new Scanner(System.in);
			char answer = myScanner.next().charAt(0);
			if (answer == 'y'){
				System.out.println("请输入添加的值");
				int addNum = myScanner.nextInt();
                
                // 创建新的数组用于添加元素。
				int[] arr2 = new int[arr1.length + 1];
				for (int i=0; i < arr1.length; i++) {
					arr2[i] = arr1[i];
				}
				arr2[arr2.length-1] = addNum;
				arr1 = arr2;
				System.out.println("数据添加成功");
				for(int i=0; i<arr1.length; i++){
					System.out.print(arr1[i] + "\t");
				}
			} else{
				break;
			}	
		}
	}
}

排序

排序是将一组数据,按照指定的顺序进行排列的过程。【之后详细介绍】

排序的分类:

1、内部排序

指将需要处理的所有数据都加载到内部存储器中进行排序,包括(交换式排序法,选择式排序法和插入式排序法)

2、外部排序法

数据量过大,无法全部加在到内存中,需要借助外部存储进行排序。包括(合并排序法和直接合并排序法)

冒泡排序:

冒泡排序的特点:

在这里插入图片描述

方法一:

public class Array01{
	public static void main(String[] args){
		int[] arr1 = {1,8,7,4,6,5};
		for (int i=0; i<(arr1.length-1); i++) {
			for (int z = i; z<arr1.length; z++) {
				if (arr1[i] > arr1[z]){
					int temp = arr1[z];
					arr1[z] = arr1[i];
					arr1[i] = temp;
				}
			 } 
		}

		for (int i=0; i<arr1.length; i++) {
			System.out.println(arr1[i]);
		}

	}
}

方法二

public class Array01{
	public static void main(String[] args){
		int[] arr1 = {1,8,7,4,3,5};
		for (int x=0; x<arr1.length-1; x++) {
			for (int i=0; i<arr1.length-1-x; i++) {
				if (arr1[i] > arr1[i+1]){
					int temp = arr1[i+1];
					arr1[i+1] = arr1[i];
					arr1[i] = temp;
				}
			}

			for (int z=0; z<arr1.length; z++) {
				System.out.print(arr1[z] + "\t");
			}
			System.out.println();
		}
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/57889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

轻量级目标检测模型NanoDet-Plus微调、部署(保姆级教学)

前言 NanoDet-Plus是超快速、高精度的轻量级无锚物体检测模型&#xff0c;github项目文件。可以在移动设备上实时检测。其主要特点是 超轻量&#xff1a;模型文件仅980KB(INT8)、1.8MB(FP16)超快&#xff1a;移动ARM CPU上97fps&#xff08;10.23ms&#xff09;高精度&#xf…

预测狗狗币价格 -- 机器学习项目基础篇(5)

Dogecoin(狗狗币)是一种加密货币&#xff0c;就像以太坊或比特币一样-尽管它与这两种着名的硬币完全不同。Dogecoin最初在某种程度上是作为加密爱好者的一个笑话&#xff0c;并从一个以前众所周知的模因中取了它的名字。 在本文中&#xff0c;我们将实现一个机器学习模型&#…

Kubernetes高可用集群二进制部署(五)kubelet、kube-proxy、Calico、CoreDNS

Kubernetes概述 使用kubeadm快速部署一个k8s集群 Kubernetes高可用集群二进制部署&#xff08;一&#xff09;主机准备和负载均衡器安装 Kubernetes高可用集群二进制部署&#xff08;二&#xff09;ETCD集群部署 Kubernetes高可用集群二进制部署&#xff08;三&#xff09;部署…

高校陆续拥抱chatgpt,人工智能会给学术带来什么变化会有什么影响

在当今信息爆炸的时代&#xff0c;人工智能在各行各业都发挥着越来越重要的作用&#xff0c;高校教育领域也不例外。最近&#xff0c;越来越多的高校开始陆续拥抱chatgpt&#xff08;Chatbot GPT&#xff09;这一人工智能技术&#xff0c;在学术领域会带来了怎样的变化与影响&a…

SQL-进阶

mysql --local-infile -u root -pset global local_infile 1;load data local infile 目录 into able 表名 fields terminated by , lines terminated by \n;

【数据结构(C++版)】哈希表(散列表)

目录 1. 散列表的概念 2. 散列函数的构造方法 2.1 直接定址法 2.2 除留余数法 2.3 数字分析法 2.4 平方取中法 3. 处理冲突的方法 3.1 开放定址法 3.1.1 线性探测法 3.1.2 平方探测法 3.1.3 双散列法 3.1.4 伪随机序列法 3.2 拉链法&#xff08;链接法&#xff0…

网络知识介绍

一、TCP 传输控制协议&#xff0c;Transmission Control Protocol。 面向广域网的通信协议&#xff0c;跨域多个网络通信时&#xff0c;为两个通信端点之间提供一条具有如下特点的通信方式&#xff1a; 基于流、面向连接、可靠通信方式、网络状况不佳时尽量降低系统由于重传带…

车载开发智能座舱技术——【Surface渲染流程】

SurfaceFlinger智能座舱技术是一种车载开发中的创新技术&#xff0c;它能够实现高效的图形渲染和多媒体处理&#xff0c;为驾驶员和乘客提供更好的车内体验。本文将介绍SurfaceFlinger智能座舱技术的概念和原理&#xff0c;并详细解析Surface的渲染流程和相关代码示例。 一、S…

无头单链表,有完整测试程序

&#x1f35f;无头单链表 &#x1f47b;无头单链表的所有结点都存储有效信息 &#x1f47b;无头单链表相对带头单链表&#xff0c;在有些涉及更改头节点的函数上需要传二级指针 &#x1f35f;头文件list.h #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #includ…

企业内网终端安全无客户端准入控制技术实践

终端无代理/无客户端准入控制技术因其良好的用户体验而倍受创新企业的青睐。无代理/无客户端准入控制技术&#xff0c;顾名思义&#xff0c;是一种在网络中对终端实施访问控制的方法&#xff0c;无需依赖特定的客户端软件。 不同于银行、医院等传统行业的终端准入控制需求&…

识别万物扫一扫,遇到不认识的物品扫就完事

随着科技的不断发展&#xff0c;移动设备已经成为人们日常生活中必不可少的工具。移动设备上的扫一扫功能&#xff0c;可以通过摄像头扫描物品&#xff0c;识别并获取相关信息&#xff0c;为人们的生活带来了很大的便利。本文将探讨识别万物扫一扫的使用及原理。 识别万物的使用…

概念辨析 | SAR运动补偿和自聚焦技术:深入探索雷达图像

注1:本文系“概念辨析”系列之一,致力于简洁清晰地解释、对比复杂而专业的概念。本次辨析的概念是:合成孔径雷达(SAR)的运动补偿和自聚焦技术。 SAR运动补偿和自聚焦技术:深入探索雷达图像 Synthetic Aperture Radar (SAR) 1 背景介绍 合成孔径雷达(Synthetic Aperture R…

iPhone 8透明屏的透明度高吗?

iPhone 8是苹果公司于2017年推出的一款智能手机&#xff0c;它采用了全新的设计和技术&#xff0c;其中一个亮点就是透明屏。 透明屏是指屏幕具有透明度&#xff0c;可以透过屏幕看到背后的物体。 iPhone 8的透明屏采用了最新的OLED技术&#xff0c;这种技术可以实现更高的对比…

RunnerGo五种压测模式你会配置吗

我们在做性能测试时需要根据性能需求配置不同的压测模式如&#xff1a;阶梯模式。使用jmeter时我们需要安装插件来配置测试模式&#xff0c;为了方便用户使用&#xff0c;RunnerGo内嵌了压测模式这一选项&#xff0c;今天给大家介绍一下RunnerGo的几种压测模式和怎么根据性能需…

shell脚本练习

#include <myhead.h> //递归实现输入一个数,输出这个数的每一位 void fun1(int data) {if(data 0) return;fun1(data/10);printf("%d\t",data%10);}//递归实现输入一个数,输出这个数的二进制 void fun2(int data) {if(data 0) return;fun2(data/2);printf(&q…

Redis7学习笔记01

一、redis7实战教程简洁 1、大纲&#xff1a; ①、适合对象&#xff0c;从小白到熟手&#xff0c;一套全包圆 ②、Redis专题-大厂面试题&#xff0c;含100道 ③、Redis专题-真实需求生产真实案例 ④、Redis7新特性 2、小白篇高阶篇&#xff1a; 3、大厂面试题&#xff1a…

软件供应链的基础:SBOM

软件作为一种强大的工具&#xff0c;可以简化复杂的技术概念&#xff0c;但随着软件不可思议的力量而来的是一个相互关联的软件依赖迷宫&#xff0c;这些依赖常常构成软件开发的基础。这些依赖关系并非没有缺陷&#xff0c;正如我们从 Log4Shell 这样的事件中所了解到的那样。当…

git 常用命令有哪些

Git 是我们开发工作中使用频率极高的工具&#xff0c;下面总结下他的基本指令有哪些&#xff0c;顺便温习一下。 前言 一般项目中长存2个分支&#xff1a; 主分支&#xff08;master&#xff09; 和开发分支&#xff08;develp&#xff09; 项目存在三种短期分支 &#xff1a…

【SQL】-【计算两个varchar类型的timestamp的毫秒差】

背景 TRANSTAMP3、TRANSTAMP2在Oracle数据库中的类型为varchar&#xff0c;但实际保存的值是时间戳timestamp类型&#xff0c;现在要计算二者的毫秒差 Oracle或MySQL extract(second from (to_timestamp(TRANSTAMP3,yyyy-mm-dd hh24:mi:ss.ff) - to_timestamp(TRANSTAMP2,yyy…

数据结构—哈夫曼树及其应用

5.6哈夫曼树及其应用 5.6.1哈夫曼树的基本概念 路径&#xff1a;从树中一个结点到另一个结点之间的分支构成这两个结点间的路径。 结点的路径长度&#xff1a;两结点间路径上的分支数。 树的路径长度&#xff1a;从树根到每一个结点的路径长度之和。记作 TL 结点数目相同的…