【机器学习】西瓜书习题3.3Python编程实现对数几率回归

参考代码
结合自己的理解,添加注释。

代码

  1. 导入相关的库
import numpy as np
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
from sklearn import linear_model
  1. 导入数据,进行数据处理和特征工程
# 1.数据处理,特征工程
data_path = 'watermelon3_0_Ch.csv'
data = pd.read_csv(data_path).values
# 取所有行的第10列(标签列)进行判断
is_good = data[:,9] == '是'
is_bad = data[:,9] == '否'
# 按照数据集3.0α,强制转换数据类型
X = data[:,7:9].astype(float)
y = data[:,9]
y[y=='是'] = 1
y[y=='否'] = 0
y = y.astype(int)
  1. 定义若干需要使用的函数
    y = 1 1 + e − x y= \frac{1}{1+e^{-x}} y=1+ex1
def sigmoid(x):
    """
    构造对数几率函数,它是一种sigmoid函数
    """
    s = 1/(1+np.exp(-x))
    return s

ℓ ( β ) = ∑ i = 1 m ( − y i β T x ^ i + l n ( 1 + e β T x ^ i ) ) \ell(\beta) = \sum_{i=1}^{m}(-y_{i}\beta^{T} \hat{x}_{i} + ln(1+e^{\beta^{T} \hat{x}_{i}})) (β)=i=1m(yiβTx^i+ln(1+eβTx^i))

def J_cost(X,y,beta):
    """
    :param X:  sample array, shape(n_samples, n_features)
    :param y: array-like, shape (n_samples,)
    :param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1)
    :return: the result of formula 3.27
    """
    # 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)
    X_hat = np.c_[X, np.ones((X.shape[0],1))]
    # β和y均reshape为1列,规模是(X.column+1行,1列)
    beta = beta.reshape(-1,1)
    y = y.reshape(-1,1)
    
    # 计算最大化似然函数的相反数
    L_beta = -y * np.dot(X_hat,beta) + np.log(1+np.exp(np.dot(X_hat,beta)))
    # 返回式3.27的结果
    return  L_beta.sum()

β = ( w ; b ) \beta = (w; b) β=(w;b)

def initialize_beta(column):
    """
    初始化β,对应式3.26的假设,规模是(X.column+1行,1列),x_hat规模是(17行,X.column+1列)
    """
    # numpy.random.randn(d0,d1,…,dn)
    # randn函数返回一个或一组样本,具有标准正态分布。标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)
    # dn表格每个维度
    # 返回值为指定维度的array
    beta = np.random.randn(column+1,1)*0.5+1
    return beta

∂ ℓ ( β ) ∂ β = − ∑ i = 1 m x ^ i ( y i − p 1 ( x ^ i ; β ) ) \frac{\partial \ell(\beta)}{\partial \beta} = -\sum_{i=1}^{m}\hat{x}_{i}(y_{i}-p_{1}(\hat{x}_{i};\beta)) β(β)=i=1mx^i(yip1(x^i;β))

def gradient(X,y,beta):
    """
    compute the first derivative of J(i.e. formula 3.27) with respect to beta      i.e. formula 3.30
    计算式3.27的一阶导数
    ----------------------------------------------------
    :param X: sample array, shape(n_samples, n_features)
    :param y: array-like, shape (n_samples,)
    :param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1)
    :return:
    """
    # 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)
    X_hat = np.c_[X, np.ones((X.shape[0],1))]
    # β和y均reshape为1列,规模是(X.column+1行,1列)
    beta = beta.reshape(-1,1)
    y = y.reshape(-1,1)
    # 计算p1(X_hat,beta)
    p1 = sigmoid(np.dot(X_hat,beta))
    
    gra = (-X_hat*(y-p1)).sum(0)
    
    return gra.reshape(-1,1) 

∂ 2 ℓ ( β ) ∂ β ∂ β T = ∑ i = 1 m x ^ i x ^ i T p 1 ( x ^ i ; β ) ( 1 − p 1 ( x ^ i ; β ) ) \frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = \sum_{i=1}^{m}\hat{x}_{i}\hat{x}_{i}^Tp_{1}(\hat{x}_{i};\beta)(1-p_{1}(\hat{x}_{i};\beta)) ββT2(β)=i=1mx^ix^iTp1(x^i;β)(1p1(x^i;β))

def hessian(X,y,beta):
    '''
    compute the second derivative of J(i.e. formula 3.27) with respect to beta      i.e. formula 3.31
    计算式3.27的二阶导数
    ----------------------------------
    :param X: sample array, shape(n_samples, n_features)
    :param y: array-like, shape (n_samples,)
    :param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1)
    :return:
    '''
    # 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)
    X_hat = np.c_[X, np.ones((X.shape[0],1))]
    # β和y均reshape为1列,规模是(X.column+1行,1列)
    beta = beta.reshape(-1,1)
    y = y.reshape(-1,1)
    # 计算p1(X_hat,beta)
    p1 = sigmoid(np.dot(X_hat,beta))
    
    m,n=X.shape
    # np.eye()返回的是一个二维2的数组(N,M),对角线的地方为1,其余的地方为0.
    P = np.eye(m)*p1*(1-p1)
    assert P.shape[0] == P.shape[1]
    # X_hat.T是X_hat的转置
    return np.dot(np.dot(X_hat.T,P),X_hat)

使用梯度下降法求解

def update_parameters_gradDesc(X,y,beta,learning_rate,num_iterations,print_cost):
    """
    update parameters with gradient descent method
    """
    for i in range(num_iterations):
        grad = gradient(X,y,beta)
        beta = beta - learning_rate*grad
        
        # print_cost为true时,并且迭代为10的倍数时,打印本次迭代的cost
        if (i%10==0)&print_cost:
            print('{}th iteration, cost is {}'.format(i,J_cost(X,y,beta)))
    
    return beta

def logistic_model(X,y,print_cost=False,method='gradDesc',learning_rate=1.2,num_iterations=1000):
    """
    :param method: str 'gradDesc'or'Newton'
    """
    # 得到X的规模
    row,column = X.shape
    # 初始化β
    beta = initialize_beta(column)
    
    if method == 'gradDesc':
        return update_parameters_gradDesc(X,y,beta,learning_rate,num_iterations,print_cost)
    elif method == 'Newton':
        return update_parameters_newton(X,y,beta,print_cost,num_iterations)
    else:
        raise ValueError('Unknown solver %s' % method)
  1. 可视化结果
# 1.可视化数据点
# 设置字体为楷体
matplotlib.rcParams['font.sans-serif'] = ['KaiTi']
plt.scatter(data[:, 7][is_good], data[:, 8][is_good], c='b', marker='o') #c参数是颜色,marker是标记
plt.scatter(data[:, 7][is_bad], data[:, 8][is_bad], c='r', marker='x')
# 设置横轴坐标标题
plt.xlabel('密度')
plt.ylabel('含糖量')

# 2.可视化自己写的模型
# 学习得到模型
beta = logistic_model(X,y,print_cost=True,method='gradDesc',learning_rate=0.3, num_iterations=1000)
# 得到模型参数及偏置(截距)
w1, w2, intercept = beta
x1 = np.linspace(0, 1)
y1 = -(w1 * x1 + intercept) / w2
ax1, = plt.plot(x1, y1, label=r'my_logistic_gradDesc')

# 3.可视化sklearn的对率回归模型,进行对比
lr = linear_model.LogisticRegression(solver='lbfgs', C=1000)  # 注意sklearn的逻辑回归中,C越大表示正则化程度越低。
lr.fit(X, y)
lr_beta = np.c_[lr.coef_, lr.intercept_]
print(J_cost(X, y, lr_beta))
# 可视化sklearn LogisticRegression 模型结果
w1_sk, w2_sk = lr.coef_[0, :]
x2 = np.linspace(0, 1)
y2 = -(w1_sk * x2 + lr.intercept_) / w2
ax2, = plt.plot(x2, y2, label=r'sklearn_logistic')
plt.legend(loc='upper right')
plt.show()

可视化结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/57798.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

指针经典笔试题强训(附图详解)

目录 笔试题1: 解析: 运行结果: 笔试题2 解析: 运行结果: 笔试题3 解析: 运行结果: 笔试题4 解析: 运行结果: 笔试题5 解析: 运行结果:…

智慧~经典开源项目数字孪生智慧商场——开源工程及源码

深圳南山某商场的工程和源码免费赠送,助您打造智慧商场。立即获取,提升商场管理效能! 项目介绍 凤凰商场作为南山地区的繁华商业中心,提供多样化的购物和娱乐体验。通过此项目,凤凰商场将迈向更智能的商业模式。 本项目…

【第一阶段】kotlin语言的String模板

1.在Java中拼接字符串使用的是“” 2.在kotlin中使用"${}" 3.kotlin语言中if是表达式,更灵活 fun main() {val city"西安"val time24//java中写法println("我在"city"玩了"time"小时")//kotlin中写法&#xff0…

汽车EBSE测试流程分析(四):反思证据及当前问题解决

EBSE专题连载共分为“五个”篇章。此文为该连载系列的“第四”篇章,在之前的“篇章(三)”中已经结合具体研究实践阐述了“步骤二,通过系统调研确定改进方案”等内容。那么,在本篇章(四)中&#…

springboot项目如何自动重启(使用Devtools检测修改并自动重启springboot)

1. 问题: 我们在项目开发阶段,可能经常会修改代码,修改完后就要重启Spring Boot。经常手动停止再启动,比较麻烦。 所以我们引入一个Spring Boot提供的开发工具; 只要源码或配置文件发生修改,Spring Boot应用…

力扣 62. 不同路径

题目来源:https://leetcode.cn/problems/unique-paths/ C题解1:动态规划。声明二维数组。 确定dp数组(dp table)以及下标的含义。dp[i][j] :表示从(0 ,0)出发,到(i, j) …

2023年08月在线IDE流行度最新排名

点击查看最新在线IDE流行度最新排名(每月更新) 2023年08月在线IDE流行度最新排名 TOP 在线IDE排名是通过分析在线ide名称在谷歌上被搜索的频率而创建的 在线IDE被搜索的次数越多,人们就会认为它越受欢迎。原始数据来自谷歌Trends 如果您相…

【MySQL】DDL和DML

4,DDL:操作数据库 我们先来学习DDL来操作数据库。而操作数据库主要就是对数据库的增删查操作。 4.1 查询 查询所有的数据库 SHOW DATABASES; 运行上面语句效果如下: 上述查询到的是的这些数据库是mysql安装好自带的数据库,我们以后不要操…

精通GPU编程,高效处理Pandas

大家好,当正在使用python处理大型数据集,那么很可能会感受到,当基于CPU的pandas DataFrame难以执行操作时,等待数小时才能完成查询的挫败感。正是在这种情况下,pandas用户应该考虑使用RAPIDS cuDF利用GPU的强大功能进行…

无涯教程-Lua - Arrays(数组)

数组是对象的有序排列,可以是包含行集合的一维数组,也可以是包含多行和多列的多维数组。 在Lua中,数组是使用带有整数的索引表实现的。数组的大小不是固定的,并且可以根据无涯教程的要求(取决于内存限制)来增长。 一维数组 一维…

Linux系统安装部署MongoDB完整教程(图文详解)

前言:本期给大家分享一下目前最新Linux系统安装部署MongoDB完整教程,我的服务器采用的是Centos7,在部署之前我重装了我的服务器,目的是为了干净整洁的给大家演示我是如何一步步的操作的,整体部署还是挺简洁&#xff0c…

react ant icon的简单使用

refer: 快速上手 - Ant Design 1.引入ant npm install antd --save 2.在页面引用: import { StarOutlined } from ant-design/icons; 如果想要引入多个icon,可以这样书写: import { UserOutlined, MailOutlined, PieChartOutlined } fr…

C/C++开发,opencv与qt结合播放视频

目录 一、qt_ui创建 1.1 ui设置 1.2 ui及代码输出保存 二、创建工程 2.1 工程目录及编译设置 2.2 源码设计 三、编译及测试 3.1 程序编译 3.2 程序运行 首先声明,这是一个OpenCV 3学习文档的案例,但是说明有些过于省略,只有一些简短的代码…

golang执行异步任务的第三方库jobrunner库实践

简介 我们在 Web 开发中时常会遇到这样的需求,执行一个操作之后,需要给用户一定形式的通知。例如,用户下单之后通过邮件发送电子发票,网上购票支付后通过短信发送车次信息。但是这类需求并不需要非常及时,如果放在请求…

java+springboot+mysql校园宿舍报修管理系统

项目介绍: 使用javaspringbootmysql开发的校园宿舍报修管理系统,系统包含管理员、维修员、学生角色,功能如下: 管理员:楼栋管理、宿舍管理、维修人员管理、学生管理;报修管理(派单给维修员&am…

npm发布包

1.npm 登录 在控制台输入命令 npm login 按提示输入用户名,密码,邮箱后登录 如果出现如下提示 需要将淘宝镜像源切换为npm源,删除或注释以下内容就行 2.发布 进入准备发布的代码的根目录下,输入命令 npm publish 3.删除已发…

微信小程序原生写法传递参数

微信小程序原生写法传递参数 data-xxx 自定义参数名 ,接收参数:方法(变量名) checkVip:function(event) {let that thisconsole.log(event,event)console.log(event.currentTarget.dataset.idx,index)let index Number(eve…

适应于Linux系统的三种安装包格式 .tar.gz、.deb、rpm

deb、rpm、tar.gz三种Linux软件包的区别 rpm包-在红帽LINUX、SUSE、Fedora可以直接进行安装,但在Ubuntu中却无法识别; deb包-是Ubuntu的专利,在Ubuntu中双击deb包就可以进入自动安装进程; tar.gz包-在所有的Linux版本中都能使用…

静态路由下一跳地址怎么确定(静态路由配置及讲解)

一、用到的所有命令及功能 ①ip route-static 到达网络地址 子网掩码 下一跳 // 配置静态路由下一跳指的是和当前网络直接连接的路由器的接口地址非直连网段必须全部做路由路径是手工指定的,在大规模网络上不能用,效率低,路径是固定的稳定的…

什么?你还没有用过JPA Buddy,那么你工作肯定没5年

1. 概述 JPA Buddy是一个广泛使用的IntelliJ IDEA插件,面向使用JPA数据模型和相关技术(如Spring DataJPA,DB版本控制工具(Flyway,Liquibase),MapStruct等)的新手和有经验的开发人员…