神经网络的激活函数

目录

神经网络 

激活函数 

sigmoid 激活函数

tanh 激活函数

backward方法 

relu 激活函数 

softmax 激活函数


神经网络 

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。

人工神经网络

每一个神经元都是=g(w1x1 + w2x2 + w3x3...) ,即先对输入求和,再对其激活

💎这个流程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算, 输入到细胞中做加和,再通过激活函数输出细胞值。我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度 w,机器学习的目的就是求这些 w 值

  • 输入层: 即输入 x 的那一层
  • 输出层: 即输出 y 的那一层
  • 隐藏层: 输入层和输出层之间都是隐藏层

激活函数 

💎激活函数用于对每层的输出数据进行变换, 进而为整个网络结构结构注入了非线性因素。此时, 神经网络就可以拟合各种曲线。如果不使用激活函数,整个网络虽然看起来复杂,其本质还相当于一种线性模型。

假设有一个单层的神经网络,其输入为𝑥x,权重为𝑤w,偏置为𝑏b,那么该层的输出𝑦y可以表示为:𝑦=𝑤⋅𝑥+𝑏y=w⋅x+b

对于多层的神经网络,如果每一层都不使用激活函数,那么无论网络有多少层,最终的输出都可以表示为输入𝑥x的一个线性组合 y=wn​⋅(wn−1​⋅(…(w2​⋅(w1​⋅x+b1​)+b2​)…)+bn−1​)+bn​

通过给网络输出增加激活函数, 实现引入非线性因素, 使得网络模型可以逼近任意函数。

激活函数能够向神经网络引入非线性因素,使得网络可以拟合各种曲线。没有激活函数时,无论神经网络有多少层,其输出都是输入的线性组合,这样的网络称为感知机,它只能解决线性可分问题,无法处理非线性问题。 

增加激活函数之后, 对于线性不可分的场景,神经网络的拟合能力更强:

🔎我们可以发现如果只使用线性函数Lnear,则模型永远不会区分两种小球(不管多少次Epochs)

🔎但当我们引入非线性激活函数后,仅仅100次就可以完美区分两种小球。

激活函数主要用来向神经网络中加入非线性因素,以解决线性模型表达能力不足的问题,它对神经网络有着极其重要的作用。我们的网络参数在更新时,使用的反向传播算法(BP),这就要求我们的激活函数必须可微。

sigmoid 激活函数

f(x) = 1 / (1 + e^(-x))

Sigmoid函数,也称为逻辑斯蒂激活函数,是早期神经网络中最常用的激活函数之一。它的特点是能够将任何实数值映射到介于0和1之间的值,这使得它在二分类问题中尤其有用,可以将输出解释为概率或者激活程度。

这个函数的图形呈现出一个S形曲线,它在中心点(x=0)增长缓慢,而在两端则增长迅速接近水平。这种特性使得Sigmoid函数在早期的神经网络中非常受欢迎,因为它可以帮助网络学习非线性关系。然而,它也存在梯度消失的问题,这意味着在训练过程中,当输入值非常大或非常小的时候,梯度几乎为零,这会导致权重更新变得非常缓慢,从而影响网络的学习效率。 

一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。

 📀绘制Sigmoid函数图像

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():
    _, axes = plt.subplots(1, 2)

    
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Sigmoid 函数图像')

    
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    torch.sigmoid(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Sigmoid 导数图像')

    plt.show()


if __name__ == '__main__':
    test()

📀在神经网络中,一个神经元的输出可以通过Sigmoid函数来表示其被激活的概率,接近1的值表示高度激活,而接近0的值则表示低激活。这种特性使得Sigmoid函数特别适合用于二分类问题的输出层,因为它可以表示两个类别的概率分布。

tanh 激活函数

Tanh 的函数图像、导数图像 :

Tanh 函数将输入映射到 (-1, 1) 之间,图像以 0 为中心,在 0 点对称,当输入 大概<-3 或者 >3 时将被映射为 -1 或者 1。与 Sigmoid 相比,它是以 0 为中心的,使得其收敛速度要比 Sigmoid 快,减少迭代次数。然而,从图中可以看出,Tanh 两侧的导数也为 0,同样会造成梯度消失。 

  • 💡由于tanh函数的输出均值是0,这与许多样本数据的分布均值相近,因此在训练过程中,权重和偏差的更新可以更快地接近最优值。
  • 💡tanh函数的导数在0到1之间变化,而Sigmoid函数的导数最大值仅为0.25,这意味着在反向传播过程中,tanh函数能够提供相对较大的梯度,从而减缓梯度消失的问题,有助于网络更快地收敛。 
  • 💡由于tanh函数的对称性和输出范围,它在正向传播时能够更好地处理正负输入值,这有助于在反向传播时进行更有效的权重更新,减少迭代次数。
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():

    _, axes = plt.subplots(1, 2)

    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Tanh 函数图像')

    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    F.tanh(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Tanh 导数图像')

    plt.show()

🔎F.tanh(x)计算了输入张量x的tanh值,然后.sum()将这些tanh值相加得到一个标量值。接下来,.backward()方法会计算这个标量值关于输入张量x的梯度,即tanh函数的导数。这样,我们就可以得到tanh函数在每个输入点上的导数值,从而绘制出tanh导数图像。

backward方法 

  • 通用性backward()方法不限于计算损失函数的梯度,它可以用于任何需要进行梯度计算的张量。例如,如果你在进行一些非神经网络的任务,比如简单的数学运算,你也可以使用backward()来计算梯度。
  • 要使用backward()计算梯度,必须满足几个条件。首先,需要计算梯度的张量必须是叶子节点,即它们不是任何其他张量的计算结果。其次,这些张量必须设置requires_grad=True以表明需要跟踪它们的梯度。最后,所有依赖于这些叶子节点的张量也必须设置requires_grad=True,以确保梯度可以传播到整个计算图中。

relu 激活函数 

ReLU激活函数的公式是 ReLU(x)=max(0, x)

ReLU激活函数(Rectified Linear Unit)在神经网络中用于引入非线性特性,其特点是计算简单且能够加速训练过程。对于正值,它直接输出输入值(即 𝑓(𝑥)=𝑥f(x)=x),对于负值,输出为零(即 𝑓(𝑥)=0f(x)=0)。这种简单的阈值操作避免了复杂的指数或乘法运算,从而显著减少了计算量。

由于ReLU在正值区间内具有不变的梯度(即梯度为1),它有助于维持信号的传播,使得基于梯度的优化算法(如SGD、Adam等)能够更有效地更新网络权重。 

函数图像如下: 

ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。 

与sigmoid相比,RELU的优势是:

采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。 Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

在神经网络的前向传播过程中,每个隐藏层的神经元都会对其输入执行线性变换(通过权重和偏差),然后应用激活函数。例如,一个神经元的输出y可以通过以下方式计算 y=ReLU(W^Tx+b),其中W是权重矩阵,x是输入向量,b是偏置项。 

在前向传播后,如果输出与实际值存在差距,则使用反向传播算法根据误差来更新网络中的权重和偏差。这个过程中,ReLU函数的梯度(导数)也会被计算出来,用于调整连接权重。

softmax 激活函数

这里,( K ) 是类别的总数,( e ) 是自然对数的底数(约等于2.71828)。 

softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。 SoftMax 函数将每个输入元素 ( z_i ) 映射到 (0,1) 区间内,并且所有输出值的总和为1,这使它成为一个有效的概率分布。

Softmax 直白来说就是将网络输出的 logits 通过 softmax 函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别。 

import torch
scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
probabilities = torch.softmax(scores, dim=0)
print(probabilities)

# 结果:tensor([0.0212, 0.0177, 0.0202, 0.0202, 0.0638, 0.0287, 0.0185, 0.0522, 0.0183,
        0.7392])

🍳对于隐藏层:

  1. 优先选择RELU激活函数

  2. 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。

  3. 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。

  4. 不要使用sigmoid激活函数,可以尝试使用tanh激活函数

🍳对于输出层:

  1. 二分类问题选择sigmoid激活函数

  2. 多分类问题选择softmax激活函数

  3. 回归问题选择identity激活函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/577180.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

杰发科技AC7840——CAN通信简介(7)_波形分析

参考&#xff1a; CAN总线协议_stm32_mustfeng-GitCode 开源社区 0. 简介 隐形和显性波形 整帧数据表示 1. 字节描述 CAN数据帧标准格式域段域段名位宽&#xff1a;bit描述帧起始SOF(Start Of Frame)1数据帧起始标志&#xff0c;固定为1bit显性(b0)仲裁段dentify(ID)11本数…

c++图论基础(2)

目录 图的存储方式&#xff1a; 邻接矩阵&#xff1a; 代码实现&#xff1a; 邻接表&#xff1a; 代码实现&#xff1a; 邻接矩阵邻接表对比&#xff1a; 带权图&#xff1a; 邻接矩阵存储&#xff1a; 邻接表存储(代码实现)&#xff1a; 图的存储方式&#xff1a; 邻…

Unreal Engine添加UGameInstanceSubsystem子类

点击C类文件夹&#xff0c;在右边的区域点击鼠标右键&#xff0c;在弹出的菜单中选择“新建C类”在弹出的菜单中选中“显示所有类”&#xff0c;选择GameInstanceSubsystem作为父类, 点击“下一步”按钮输入子类名称“UVRVIUOnlineGameSubsystem”&#xff0c;选择插件作为新类…

Qt 创建控件的两种方式

目录 Qt 创建控件的两种方式 通过ui界面创建控件 通过代码方式创建控件 Qt 创建控件的两种方式 通过ui界面创建控件 这里当然我们是需要先有一个项目的&#xff0c;按照我们之前创建项目的步骤&#xff0c;我们可以先创建一个 Widget 的项目&#xff0c;但是 MainWindow 也…

EasyRecovery数据恢复软件2025激活码及下载使用步骤教程

EasyRecovery数据恢复软件是一款功能强大且用户友好的数据恢复工具&#xff0c;专为帮助用户找回因各种原因丢失的数据而设计。该软件由全球知名的数据恢复技术公司开发&#xff0c;经过多年的技术积累和更新迭代&#xff0c;已经成为行业内备受推崇的数据恢复解决方案。 EasyR…

Spring MVC系列之九大核心组件

概述 Spring MVC是面试必问知识点其一&#xff0c;Spring MVC知识体系庞杂&#xff0c;有以下九大核心组件&#xff1a; HandlerMappingHandlerAdapterHandlerExceptionResolverViewResolverRequestToViewNameTranslatorLocaleResolverThemeResolverMultipartResolverFlashMa…

Andorid复习

组件 TextView 阴影 android:shadowColor"color/red" 阴影颜色android:shadowRadius"3.0" 阴影模糊度&#xff08;大小&#xff09;android:shadowDx"10.0" 横向偏移android:shadowDy"10.0" 跑马灯 这里用自定义控件 public cla…

【Java】HOT100 回溯

目录 理论基础 一、组合问题 LeetCode77&#xff1a;组合 LeetCode17&#xff1a;电话号码的字母组合 LeetCode39&#xff1a;组合总和 LeetCode216&#xff1a;组合总和ii LeetCode216&#xff1a;组合总和iii 二、分割问题 LeetCode131&#xff1a;分割回文串 Leet…

MFC实现ini配置文件的读取

MFC实现 ini 配置文件的读取1 实现的功能&#xff1a;点击导入配置文件按钮可以在旁边编辑框中显示配置文件的路径&#xff0c;以及在下面的编辑框中显示配置文件的内容。 1. 显示配置文件内容的编辑框设置 对于显示配置文件内容的 Edit Contorl 编辑框的属性设置如下&#x…

vue3中所有页面需要手动刷新一下才能显示,控制台没有报错

1.问题 登录进来是进入首页&#xff0c;然后切换任何页面都是空白&#xff0c;但是控制台没有报错。在其他页面刷新后却能显示&#xff0c;然而切换到首页刷新后再切换到其他页面又是空白。 2.解决问题 原因&#xff1a;在于首页给了两个根标签&#xff0c;我把其中一个根标签…

视频输入c++ 调用 libtorch推理

1、支持GPU情况 libtorch 支持GPU情况比较奇怪&#xff0c;目前2.3 版本需要在链接器里面加上以下命令&#xff0c;否则不会支持gpu -INCLUDE:?ignore_this_library_placeholderYAHXZ 2 探测是否支持 加一个函数看你是否支持torch&#xff0c;不然不清楚&#xff0c;看到…

axios——503响应超时重复多次请求——技能提升

今天在写后台管理系统时&#xff0c;遇到一个问题&#xff0c;就是每天早上一启动项目&#xff0c;接口会提示503超时&#xff0c;因此项目运行必须重新刷新请求成功后才可以正常使用。 后端同事说请求超时了&#xff0c;需要前端处理一下&#xff0c;如果是503的状态码&#…

封装 H.264 视频为 FLV 格式然后推流

封装 H.264 视频为 FLV 格式并通过 RTMP 推流 flyfish 协议 RTMP (Real-Time Messaging Protocol) RTSP (Real Time Streaming Protocol) SRT (Secure Reliable Transport) WebRTC RTMP&#xff08;Real Time Messaging Protocol&#xff09;是一种用于实时音视频流传输的协…

西安交通大学 915 备考常见误区

看到助教在 915 全程班群里给同学们解答问题&#xff0c;我也是感触颇深&#xff0c;想起来我当年自身的一个备考情况。接下来结合我自身情况给同学们分析一下&#xff0c;为什么有的同学基础一般&#xff0c;最后分数却很高&#xff0c;有的同学基础很好&#xff0c;分数却一般…

Linux网络编程---多进/线程并发服务器

一、多进程并发服务器 实现一个服务器可以连接多个客户端&#xff0c;每当accept函数等待到客户端进行连接时 就创建一个子进程 思路分析&#xff1a; 核心思路&#xff1a;让accept循环阻塞等待客户端&#xff0c;每当有客户端连接时就fork子进程&#xff0c;让子进程去和客户…

html+css+js+jquery实现在网页端将手动输入用户的信息转化成表格

1.实现的效果图 2.css代码 ​<style>*{background-color: antiquewhite;}#ss{font-size:20px;text-align: center;}#inputForm { margin-bottom: 20px; } #userTable { width: 100%; border-collapse: collapse; } #userTable th, #userTable td { border: 1px …

Xcode for Mac:强大易用的集成开发环境

Xcode for Mac是一款专为苹果开发者打造的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它集成了代码编辑器、编译器、调试器等一系列开发工具&#xff0c;让开发者能够在同一界面内完成应用的开发、测试和调试工作。 Xcode for Mac v15.2正式版下载 Xcode支持多种编程…

Linux进阶篇:CentOS7搭建NFS文件共享服务

CentOS7搭建NFS文件共享服务 一、NFS介绍 NFS(Network File System)意为网络文件系统&#xff0c;它最大的功能就是可以通过网络&#xff0c;让不同的机器不同的操作系统可以共享彼此的文件。简单的讲就是可以挂载远程主机的共享目录到本地&#xff0c;就像操作本地磁盘一样&…

Ubentu18.0+ORBSLAM2

Ubentu18.0ORB-SLAM2摄像头 引言&#xff1a; ​ 在视觉同步定位与地图构建&#xff08;Simultaneous Localization and Mapping, SLAM&#xff09;领域&#xff0c;ORB-SLAM2系统的出现标志着重要的技术进步。这个著名的SLAM系统由Juan D. Tards、Ral Mur-Artal等人开发&#…

RabbitMQ发布确认和消息回退(6)

概念 发布确认原理 生产者将信道设置成 confirm 模式&#xff0c;一旦信道进入 confirm 模式&#xff0c;所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始)&#xff0c;一旦消息被投递到所有匹配的队列之后&#xff0c;broker就会发送一个确认给生产者(包含消…