github+PicGo+obsidian来作为你的免费高效可靠图床吧

前提

一直以来 博客的图床问题都是个大问题 ,如何找到一个 可靠并且 方便的搭建方式 非常重要
今天介绍一种 github+picGo+obsidian的搭建方式

准备github库

image.png

生成个人github token

找到个人 设置
image.png
image.png
生成一个新token 或者已经有的直接用
新生成的token 需要记录下来 这可能是你最后一次 看见他…

安装picgo

贴心的给你带个链接这是你心心念念的picgo的链接yo
image.png

安装obsidian

宝藏obsidian

obsidian 插件安装

进入 obsidian 的插件市场

image.png

配置 picgo

image.png

***注意设置一下 github为默认的 图床剩下的

obsidian配置

这个就是默认的不用管就行 千万别动他

image.png

完结撒花

这个真的特别爽 ,喜欢的伙伴可以点点关注点点赞哟!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/576618.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在若依Ruoyi-Vue中集成mybatisplus实现mybatis增强

本文相关视频:https://www.bilibili.com/video/BV1Fi4y1q74p?p50&vd_source2894aa0e46c09ba98269f266128b6c6e 若依(Ruoyi)作为一款优秀的基于Spring Boot和Vue.js的企业级后台管理系统,其良好的架构设计和丰富的功能组件深…

13.JAVAEE之HTTP协议

HTTP 最新的版本应该是 HTTP/3.0 目前大规模使用的版本 HTTP/1.1 使用 HTTP 协议的场景 1.浏览器打开网站 (基本上) 2.手机 APP 访问对应的服务器 (大概率) 学习 HTTP 协议, 重点学习 HTTP 的报文格式 前面的 TCP/IP/UDP 和这些不同, HTTP 的报文格式,要分两个部分来看待.请求…

C# WinForm —— 10 单选按钮与复选框的介绍与使用

单选按钮 RadioButton 一组单选按钮中,只能选择一个,互相排斥 常用属性、事件: 属性用途(Name)单选按钮的ID,在代码里引用的时候会用到,一般以 rb开头Text单选按钮旁边显示的 文本信息Checked单选按钮的勾选状态Appearance控制单…

数据结构:最小生成树(Prim算法和Kruskal算法)、图的最短路径(Dijkstra算法和Bellman-Ford算法)

什么是最小生成树?Prim算法和Kruskal算法是如何找到最小生成树的? 最小生成树是指在一个连通图中,通过连接所有节点并使得总权重最小的子图。 Prim算法和Kruskal算法是两种常用的算法,用于寻找最小生成树。 Prim算法的步骤如下&…

通过 QEMU 试用 ESP32-C3 的安全功能

概述 ESP32-C3 系列芯片支持可信启动、flash 加密、安全存储等多种安全功能,还有专用外设来支持 HMAC 和数字签名等用例。这些功能所需的私钥和配置大多存储在 ESP32-C3 的 eFuse 存储器中。 启用安全功能时需要谨慎,因为使用到的 eFuse 存储器是一次…

实现SpringMVC底层机制(二)

文章目录 1. 动态获取spring配置文件1.修改SunWebApplicationContext.java2.修改SunDispatcherServlet.java 2.自定义Service注解1.需求分析2.编写Monster.java3.自定义Service注解4.编写Service接口MonsterService.java5.编写Service实现类MonsterServiceImpl.java6.修改SunWe…

数据结构系列-二叉树之前序遍历

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 这篇文章,我们主要的内容是对二叉树当中的前历的算法进行讲解,二叉树中的算法所要求实现的是 从根到左子树再到右子树的遍历顺序,可能这样不太…

C语言--基础面试真题

1、局部变量和静态变量的区别 普通局部变量和静态局部变量区别 存储位置: 普通局部变量存储在栈上 静态局部变量存储在静态存储区 生命周期: 当函数执行完毕时,普通局部变量会被销毁 静态局部变量的生命周期则是整个程序运行期间&#…

程序员学CFA——数量分析方法(四)

数量分析方法(四) 常见概率分布基本概念离散型随机变量与连续型随机变量离散型随机变量连续型随机变量 分布函数概率密度函数(PDF)累积分布函数(CDF) 离散分布离散均匀分布伯努利分布二项分布定义股价二叉树…

Rabbitmq安装延迟插件rabbitmq_delayed_message_exchange失败

Docker里的Rabbitmq容器安装延迟插件rabbitmq_delayed_message_exchange失败 一启动插件Rabbitmq容器直接停止运行了 rabbitmq-plugins enable rabbitmq_delayed_message_exchange排除了版本问题和端口问题等,发现是虚拟机运行内存不够,增加虚拟机运行内…

python基础——正则表达式

📝前言: 这篇文章主要想讲解一下python中的正则表达式: 1,什么是正则表达式 2,re模块三匹配 3,元字符匹配 4,具体示例 🎬个人简介:努力学习ing 📋个人专栏&am…

Hybrid Homomorphic Encryption:SE + HE

参考文献: [NLV11] Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be practical?[C]//Proceedings of the 3rd ACM workshop on Cloud computing security workshop. 2011: 113-124.[MJS16] Maux P, Journault A, Standaert F X, et al. To…

【定制化体验:使用Spring Boot自动配置,打造个性化Starter】

项目结构 Pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4…

yml文件修改工具

导入一个 yml 配置文件 可以根据给定的 name 源文件内容 举例如下 - alterId: 0cipher: autoname: 链接1port: 11004server: dotu-hkv1.03ezhg0qsa.downloadskip-cert-verify: truetls: falsetype: tpyudp: trueuuid: ac1f3b35-1d03-3a85-beab-根据name 可以快速将源内容进行替…

系统启动之后创建的第一个窗口是什么?

com.android.settings TYPE_BASE_APPLICATION 1 &#xff1b; 启动时显示的窗口有&#xff1a; 系统窗口有: TYPE_STATUS_BAR TYPE_SEARCH_BAR TYPE_PHONE TYPE_SYSTEM_ALERT TYPE_KEYGUARD TYPE_TOAST TYPE_SYSTEM_OVERLAY TYPE_PRIORITY_PHONE TYPE_SYSTEM_DIALOG…

Synchronized关键字的深入分析

一、引言 在多线程编程中&#xff0c;正确地管理并发是确保程序正确运行的关键。Java提供了多种同步工具&#xff0c;其中synchronized关键字是最基本且最常用的同步机制之一。本文旨在深入解析synchronized的实现原理&#xff0c;探讨其在不同应用场景中的使用&#xff0c;并…

创新书荐|用《创新者的窘境》指导企业应对AI颠覆技术避免被颠覆

如何利用《创新者的窘境》应对AI的颠覆性技术时&#xff0c;了解并实施正确的战略对于确保企业在动荡的市场环境中保持增长和竞争力至关重要。我们分析了市场领导者和初创公司如何利用AI开辟新的增长路径&#xff0c;以及企业如何在技术革命中维持竞争优势。想要深入了解并实践…

CogVLM CogAgent模型部署

CogVLM & CogAgent 下载地址 CogVLM & CogAgent 的 Github 官方仓库&#xff1a;https://github.com/THUDM/CogVLM CogVLM & CogAge…

了解ASK模块STX883Pro和超外接收模块SRX883Pro的独特之处 STX883Pro模块具有以下特点:

高发射功率&#xff1a;STX883Pro具有较高的发射功率&#xff0c;可实现长距离的信号传输&#xff0c;适用于需要覆盖广泛区域的应用场景。 高频率稳定性&#xff1a;具备稳定的频率输出&#xff0c;确保信号传输的可靠性和一致性&#xff0c;避免频率漂移导致的通信故障。 大…

异常检测 | SVDD支持向量数据描述异常数据检测(Matlab)

异常检测 | SVDD支持向量数据描述异常数据检测&#xff08;Matlab&#xff09; 目录 异常检测 | SVDD支持向量数据描述异常数据检测&#xff08;Matlab&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本介绍 用于一类或二元分类的 SVDD 模型 多种核函数&#xff08;…