MySQL索引1——基本概念与索引结构(B树、R树、Hash等)

目录

索引(INDEX)基本概念

索引结构分类

B+Tree树索引结构

Hash索引结构

Full-Text索引

R-Tree索引


索引(INDEX)基本概念

什么是索引

索引是帮助MySQL高效获取数据的有序数据结构

为数据库表中的某些列创建索引,就是对数据库表中某些列的值通过不同的数据结构进行排序

为列建立索引之后,数据库除了维护数据之外,还会维护满足特定查找算法的数据结构,这些数据结构以某种方式指向数据,这样就可以在这些数据结构上实现快速查询,这种数据结构就是索引

索引的作用

通过索引可以将无序的数据变为有序的数据,能够实现快速访问数据库表中的特定信息

优缺点

优点

提高数据检索的效率,降低数据库的IO成本

通过索引对数据进行排序,降低数据排序的成本,降低CPU的消耗

缺点

索引会占用空间

索引提高了表的查询效率,但是却降低了更新表的速度(Insert、Update、Delete)

索引只是一个提高效率的因素,如果MySQL有大数据量的表,就需要花时间研究最优秀的索引(即需要研究为哪些字段建立索引能够使得效率提升到最大化,因为一条查询语句只会引用到一种索引,并且一般建议一个表建立的索引数量不要超过5个)


索引结构分类

索引结构主要分为四大类

B+Tree索引-(B+树)

最常见的索引类型,大部分的存储引擎都支持此索引

Hash索引-(Hash表)

底层的数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询

Full-Text索引-(倒排索引)

又名全文索引,是一种通过建立倒排索引,快速匹配文档的方式

R-Tree索引(R-Tree树)

又名空间索引,是MyISAM引擎的一个特殊索引类型,主要用于地理位置数据,使用较少

存储引擎对不同索引的支持情况(默认B+Tree索引)

 在MySQL数据库中,支持Hash索引的是Memory引擎;而InnoDB中具有自适应Hash的功能,根据B+tree索引在指定条件下自动构建的

B+Tree树索引结构

B+Tree树是由二叉树 → 红黑树(自平衡二叉树) → B-Tree树烟花而来的,我们在介绍B+Tree树之前先介绍这三种数据结构

二叉树

二叉树的每个节点最多有两个子节点(两颗子树);并且两个子节点是有序的

以单个节点为例:左边子节点是比自身小的,右边子节点是比自身大的

缺点

  1. 大数据量的情况下,层级较深,检索速度慢
  2. 容易形成倾斜树(左倾斜或右倾斜)

 二叉树的工作原理

 二叉树的数据插入(依次插入30、40、20、19、21、39、35)

 二叉树的数据遍历

 二叉树的数据查找(查找39 、21、25)

 二叉树的数据删除(依次删除19、39、30)

红黑树(自平衡二叉树)

红黑树时二叉树的变种,可以解决二叉树插入数值时产生斜树的问题

任何一个节点都有颜色(红色或黑色),通过颜色来确保树在插入和删除时的平衡

根节点一定是黑色的;Null节点被认为是黑色的;每个红色节点的两个叶子节点都是黑色

每个叶子节点到根的路径上不能出现连续的红色节点

任何一个节点到达叶子节点所经过的黑节点个数必须相等

当在红黑树中进行插入和删除操作时,会通过左旋、右旋、重新着色来修复树结构,保持树的平衡

缺点

  1. 在进行大量插入和删除操作的情况下,可能会造成频繁的树重构,影响性能
  2. 红黑树的实现比较复杂,需要维护节点的颜色和平衡
  3. 红黑树本质也是二叉树,在大数据量的情况下,层级较深,检索速度会下降

红黑树的工作原理

红黑树的数据插入(依次插入30、40、20、19、21、39、35)  使用到了右旋

红黑树的数据遍历

红黑树的数据查找(查找39 、21、25)

红黑树的数据删除(依次删除19、39、30)

B-Tree树(多路平衡查找树)

二叉树一个Node节点只能够存储一个Key和一个Value,并且只有两个子节点;而多路树相比较而言一个Node节点能够存储更多的Key和Value,能够携带更多的子节点,建树高度会比二叉树要低

B-Tree树的一个节点能够存储多少Key和Value,可以有多少个子节点通过最大度数(MAX-Degree 也称为阶数)决定

一个m阶的B-Tree树

       树中的每个节点最多有m个子节点,m-1个Key和Value(两个子树的指针夹着一个Key和Value)

       树的根节点至少有一个Key和Value,至少两个子节点

缺点

B树的叶子节点和非叶子节点都会保存数据,使得非叶子节点保存的指针量变小

如果存储大量的数据,需要增加树的高度,导致IO操作变多,查询性能变低

B-Tree树的工作原理

B-Tree树的数据插入Max-Degree为3(依次插入30、40、20、19、21、39、35)

B-Tree树的数据遍历

B-Tree树的数据查找(查找39 、21、25)

B-Tree树的数据删除(依次删除19、39、30)

B+Tree

B+Tree树是B-Tree树的变种,也是一种多路搜索树,定义基本与B-Tree相同

B+Tree只有叶子节点存储数据,并且所有的元素都会出现在叶子节点中,所有叶子节点形成了一个单向链表;叶子节点将数据按照大小排列,并且相邻叶子节点之间按照大小排列

非叶子节点不存储数据,只存储Key,只是起到索引的作用,在相同的数据量下,B+Tree树更加矮壮

B-Tree树的工作原理

B+Tree树的数据插入Max-Degree为3(依次插入30、40、20、19、21、39、35)

B+Tree树的数据遍历

B+Tree树的数据查找(查找39 、21、25)

B+Tree树的数据删除(依次删除19、39、30)

MySQL的B+Tree索引结构

MySQL的索引数据结构对经典的B+Tree进行了优化,在原B+Tree的基础上,增加了一个指向相邻叶子节点的链表指针,所有叶子节点形成了一个双向链表,提高了遍历速度

MySQL在查询是根据查询条件查询对应的键值(Key),然后将键值对应数据(Value)提取出来

Hash索引结构

哈希索引就是采用一定的hash算法,将键值换算成新的Hash值,将哈希值映射到一个桶中,桶中存储了所有哈希值相同的数据行的指针,然后存储在Hash表中;

当查询时,MySQL会先通过哈希函数计算出查询条件的哈希值,在Hash表中查找对应的桶,然后在对应的桶中查找相应的数据行

哈希冲突

如果两个或多个键值,映射到同一个相同的槽位(桶),则他们就产生了hash冲突,通过链表解决

 特点

  1. Hash索引只能够用于对等比较(=,in等),不支持范围查询(between,>,<等)
  2. 无法利用Hash索引完成排序操作;因为Hash索引中存放的是经过Hash计算后的Hash值,此值的大小并不一定和Hash运算之前的键值完全一样
  3. Hash索引无法避免表扫描,即每次都要全表扫描;因为Hash索引是将键值通过Hash运算之后,将其结果和对应的行指针信息存放在一个Hash表中,由于不同的索引键可能存在相同的Hash值,也就是哈希冲突,所以满足某个Hash键值的数据的记录跳数,无法直接从Hash索引中直接完成查询,还是要通过访问表中的实际数据进行比较,并得到相应的结果
  4. 对于联合索引,Hash不能使用部分索引键查询(要么全部使用,要么全部不使用)
  5. Hash只需要做一次运算,就可以找到该数据所在的桶;不像树结构那样从根、叶子节点的顺序来查找;所以Hash索引的查询效率理论上是要高于B+Tree的;不过对于存在大量Hash值相同的情况下,性能不一定比B+Tree高

Full-Text索引

通过建立倒排索引(Inverted Index)构建Full-Text索引,提高数据的检索效率

倒排索引是一种将文档中的单词/汉字映射到其出现位置的数据结构,主要用来解决判断字段的值中 是否包含 某字符/汉字的问题

我们对于简单业务或者数据量小的业务,可以通过Like()关键字来判断;但是对于大数据量业务,使用Like效率会大大降低

不同存储索引对Full-Text索引的支持

在MySQL5.6版本之前,只有MYISAM存储引擎支持全文索引

在MySQL5.6版本之后,InnoDB能够支持全文索引;不过只支持对英文的全文索引,不支持中文的全文索引;后续通过内置分词器(ngram)来支持中文索引

配置ngram的最小长度

在MySQL的配置文件中添加以下字段

ft_min_word_len = 2     #此最小长度就是分词的最小长度,默认为2

即:对于一段语句,可以分为多个汉字组,每个汉字组最少都有2个汉字

    我想学习数据库  可以分词为: 我想 学习  数据库 三个组

一般不会将ngram设置的很小,如果很小的话会占用大量的空间,因此我们一般都不修改此最小长度,就默认为2

全文索引的流程

用户输入要查找的内容 → SQL执行引擎 → ngram对查找的内容进行分词 → 把分词后的词依次的去倒排索引中去查找 → 将相应的记录返回

分词器ngram在建立索引时会对字段中的值进行分词;在进行查询时也会对要查找的内容分词

R-Tree索引

构建空间索引有多种数据结构,例如四叉树、R-Tree树

在MySQL中是通过R-Tree树来构建空间索引的,是一种加快空间数据查询速度的技术

R-tree将空间数据分割成一系列矩形区域,每个节点可以表示一个矩形区域,同时可以包含其他节点或数据项。这种层级结构允许MySQL在空间查询中更快地定位所需的数据,减少搜索范围,从而提高查询性能

例如:

一个表中的某字段存储着一个地方餐馆的经纬度位置信息,现在我们需要根据我们的位置,找附近1公里的餐馆

我们可以通过计算我们的位置,找到附近1公里范围内的经纬度范围,然后查询表中的满足此经纬度的值;为了加快检索效率,我们就可以对存储经纬度位置信息的字段建立空间索引

R-Tree的构建过程——R树是把B树的思想扩展到了多维空间

1、数据划分

所有的数据项也成为对象(点、线或面)都被视为一个单独的矩形

2、构建叶子节点(叶子节点是R树的底层节点)

将划分好的矩形进行分组,并构建叶子节点;每个叶子节点包含多个对象及其对应的矩形

3、合并叶子节点

当叶子节点的数目超过了R-Tree规定的最大容量,此时R树会尝试合并相邻的叶子节点来减少树的高度和提高查询效率

4、构建非叶子节点

将合并后叶子构建为新的非叶子节点;非叶子节点也是一个矩形,包含了其所有子节点的矩形范围

5、递归构建

重复上述的操作,知道构建出整个R树的根节点(R树的最顶层节点,将包含所有的数据范围)

具体R树的构建方式可以参考以下文章

从B树、B+树、B*树谈到R 树_v_JULY_v的博客-CSDN博客https://blog.csdn.net/v_JULY_v/article/details/6530142

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/57571.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言笔试题训练【第一天】

目录 第一题 第二题 第三题 第四题 第五题 大家好&#xff0c;我是纪宁。 从今天开始博主会日更一些经典的C语言笔试题&#xff0c;持续20天左右。题目类型为5道选择题加2道编程题&#xff0c;希望能和大家一起进步。 第一题 1.读程序&#xff0c;下面程序正确的输出是&…

【Java可执行命令】(十二)依赖分析工具jdeps:通过静态分析字节码并提取相关信息来实现依赖分析 ~

Java可执行命令之jdeps 1️⃣ 概念2️⃣ 优势和缺点3️⃣ 使用3.1 语法格式3.2 可选参数&#xff1a;jdeps -dotoutput < dir>3.3 可选参数&#xff1a;jdeps -s3.4 可选参数&#xff1a;jdeps -v3.5 可选参数&#xff1a;jdeps -cp < path>3.6 注意事项&#xff1…

【雕爷学编程】 MicroPython动手做(35)——体验小游戏2

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…

TensorRT学习笔记--基于TensorRT部署YoloV3, YoloV5和YoloV8

目录 1--完整项目 2--模型转换 3--编译项目 4--序列化模型 5--推理测试 1--完整项目 以下以 YoloV8 为例进行图片和视频的推理&#xff0c;完整项目地址如下&#xff1a;https://github.com/liujf69/TensorRT-Demo git clone https://github.com/liujf69/TensorRT-Demo.…

iPhone 8 Plus透明屏有哪些场景化应用?

iPhone 8 Plus是苹果公司于2017年推出的一款智能手机&#xff0c;它采用了全新的玻璃机身设计&#xff0c;使得手机更加美观和时尚。 而透明屏则是一种新型的屏幕技术&#xff0c;可以使手机屏幕呈现出透明的效果&#xff0c;给人一种科技感十足的视觉体验。 透明屏是通过使用…

Selenium Chrome Webdriver 如何获取 Youtube 悬停文本

导语 Youtube 是一个非常流行的视频分享平台&#xff0c;有时候我们可能想要爬取一些视频的信息&#xff0c;比如标题、播放量、点赞数等。但是有些信息并不是直接显示在网页上的&#xff0c;而是需要我们将鼠标悬停在某个元素上才能看到&#xff0c;比如视频的时长、上传时间…

Linux NUMA架构(非统一内存访问)

NUMA架构 NUMA Architecture| Non Uniform Memory Access Policy/Model | Numa Node Configuration (CPU Affinity) NUMA架构产生的原因 cpu的高速处理功能和内存存储直接的速度会严重影响cpu的性能。传统的计算机单核架构,cpu通过内存总线(内存访问控制器)直接连接到一…

Ubuntu安装harbor(http模式)并随便上传一个

Ubuntu安装harbor&#xff08;http模式&#xff09; docker和harbor的介绍就免了&#xff0c;都不知道啥东西&#xff0c;还安装搞毛 先安装docker环境 不要问&#xff0c;软件源之类的配置&#xff0c;挨个梭就行 sudo apt update sudo apt install apt-transport-https ca…

【Spring Cloud 三】Eureka服务注册与服务发现

系列文章目录 【Spring Cloud一】微服务基本知识 Eureka服务注册与服务发现 系列文章目录前言一、什么是Eureka&#xff1f;二、为什么要有服务注册发现中心&#xff1f;三、Eureka的特性四、搭建Eureka单机版4.1Eureka服务端项目代码pom文件配置文件启动类启动项目查看效果 E…

uni-app选择器( uni-data-picker)选择任意级别

背景说明 uni-app 官方的插件市场有数据驱动选择器&#xff0c;可以用作多级分类的场景。引入插件后&#xff0c;发现做不到只选择年级&#xff0c;不选择班级&#xff08;似乎&#xff0c;只能到最后子节点了&#xff09;。 需求中&#xff0c;有可能选择的不是叶子。比如&a…

力扣 C++|一题多解之动态规划专题(1)

动态规划 Dynamic Programming 简写为 DP&#xff0c;是运筹学的一个分支&#xff0c;是求解决策过程最优化的过程。20世纪50年代初&#xff0c;美国数学家贝尔曼&#xff08;R.Bellman&#xff09;等人在研究多阶段决策过程的优化问题时&#xff0c;提出了著名的最优化原理&…

django使用ztree实现树状结构效果,子节点实现动态加载(l懒加载)

一、实现的效果 由于最近项目中需要实现树状结构的效果,考虑到ztree这个组件大家用的比较多,因此打算在django项目中集成ztree来实现树状的效果。最终实现的示例效果如下: 点击父节点,如果有子节点,则从后台动态请求数据,然后显示出子节点的数据。 二、实现思路 …

openCV C++环境配置

文章目录 一、openCV 安装二、新建项目三、配置环境变量四、测试使用 编译器:vs2017 OpenCV:4.5.4 一、openCV 安装 将openCV安装到一个路径下&#xff0c;我安装到了D盘根目录下 二、新建项目 在vs2017新建控制台空项目&#xff0c;打开项目属性 在VC目录 -> 包含目录下…

基于ARM+FPGA (STM32+ Cyclone 4)的滚动轴承状态监测系统

状态监测系统能够在故障早期及时发现机械设备的异常状态&#xff0c;避免故障的 进一步恶化造成不必要的损失&#xff0c;滚动轴承是机械设备的易损部件&#xff0c;本文对以滚动 轴承为研究对象的状态监测系统展开研究。现有的监测技术多采用定时上传监 测数据&#xff0c;…

Docker-Compose编排与部署

目录 Docker Compose Compose的优点 编排和部署 Compose原理 Compose应用案例 安装docker-ce 阿里云镜像加速器 安装docker-compose docker-compose用法 Yaml简介 验证LNMP环境 Docker Compose Docker Compose 的前身是 Fig&#xff0c;它是一个定义及运行多个 Dock…

【ARM Coresight 系列文章 2.4 - Coresight 寄存器:DEVARCH,DEVID, DEVTYPE】

文章目录 1.1 DEVARCH(device architecture register)1.2 DEVID(Device configuration Register)1.3 DEVTYPE(Device Type Identifier Register) 1.1 DEVARCH(device architecture register) DEVARCH 寄存器标识了coresight 组件的架构信息。 bits[31:21] 定义了组件架构&…

使用 github 同步谷歌浏览器书签

想必使用谷歌浏览器Chrome的用户一定非常头疼的一件事就是&#xff1a;账户不能登录&#xff0c;书签收藏夹不能同步&#xff0c;换一台电脑书签收藏夹没有了&#xff01; 下面教大家一招亲测有效适用的方法解决书签同步问题&#xff0c;在任何电脑都可以同步了 1、去下载谷歌…

数据分析基础-Excel图表的美化操作(按照教程一步步操作)

一、原始数据 包含月份和对应的销量和产量。 时间销量产量1月60722月38673月28344月58685月67596月72357月61428月24319月556710月243511月122112月2645 二、原始的图表设计-采用Excel自带模板 三、优化思路 1、删除多余元素 2、弱化次要元素 对于可以弱化的元素&#xff0c…

Excel如何把两列互换

第一步&#xff1a;选择一列 打开excel&#xff0c;选中一列后将鼠标放在列后&#xff0c;让箭头变成十字方向。 第二步&#xff1a;选择Shift键 按住键盘上的Shift键&#xff0c;将列往后移动变成图示样。 第三步&#xff1a;选择互换 完成上述操作后&#xff0c;松开鼠标两…

Ajax快速入门

文章目录 Ajax原生ajaxaxios案例 Ajax Ajax就是前端访问服务器端数据的一个技术 还有主要就是异步交互 就是在不刷新整页面的情况下&#xff0c;和服务器交换部分我也数据 比如搜索的联想技术 同步和异步的概念 一个是客户端需要等待服务器完成处理&#xff0c;才能进行别的事…