opencv 30 -图像平滑处理01-均值滤波 cv2.blur()

什么是图像平滑处理?

图像平滑处理(Image
Smoothing)是一种图像处理技术,旨在减少图像中的噪声、去除细节并平滑图像的过渡部分。这种处理常用于预处理图像,以便在后续图像处理任务中获得更好的结果。

常用的图像平滑处理方法包括:

均值滤波(Mean Filtering):用图像中像素周围区域的平均值来代替每个像素的值,从而平滑图像。均值滤波对去除高斯噪声等简单噪声类型效果较好。

高斯滤波(Gaussian Filtering):使用高斯核来对图像进行滤波,高斯滤波在平滑图像的同时能够较好地保留图像的边缘信息。

中值滤波(Median Filtering):用像素周围区域像素值的中值来代替每个像素的值,适用于去除椒盐噪声等脉冲型噪声。

双边滤波(Bilateral Filtering):结合空间域和灰度值域的信息,能够保持图像的边缘特征,同时对图像进行平滑处理。

图像平滑处理应用场景

图像平滑处理在图像处理中有广泛的应用场景,主要用于去除图像中的噪声、减少细节、平滑图像的过渡部分,从而提升后续图像处理任务的效果。

以下是图像平滑处理的一些常见应用场景:

去噪声:图像中可能存在不同类型的噪声,如高斯噪声、椒盐噪声等。使用图像平滑处理方法可以有效地减少这些噪声,提高图像质量。

在尽量保留图像原有信息的情况下,过滤掉图像内部的噪声,这一过程称为对图像的平滑
处理,所得的图像称为平滑图像。例如,下图是含有噪声的图像,在图像内存在噪声信息,
我们通常会通过图像平滑处理等方式去除这些噪声信息。

在图这里插入图片描述
通过图像平滑处理,可以有效地过滤掉图像内的噪声信息。再看下面得图 所示是对上面图 进行图像平滑处理的结果,可以看到原有图像内含有的噪声信息被有效地过滤掉了。

在这里插入图片描述

图像降噪:在低光条件下或者高ISO值下拍摄的图像可能会有较多的噪点。通过图像平滑处理,可以降低噪点的影响,使图像看起来更加干净和清晰。

图像模糊:在某些情况下,我们可能希望减少图像中的细节,使图像变得模糊,以达到某种特定的效果。图像平滑处理可以实现这个目标。

图像缩放:当对图像进行缩放操作时,可能会引入锯齿效应或马赛克现象。通过图像平滑处理,可以减少这些不平滑的现象,得到更平滑的缩放图像。

边缘检测:在进行边缘检测等图像处理任务时,图像平滑处理可以帮助去除细节,使边缘更加清晰和明显。

目标检测和识别:在某些情况下,图像中的细节和噪声可能会干扰目标检测和识别算法。通过图像平滑处理,可以消除这些干扰,提高目标检测和识别的准确性。

总的来说,图像平滑处理是图像预处理的重要步骤,它能够改善图像质量、减少噪声和细节,为后续图像处理任务提供更好的输入。不过需要注意,过度的平滑处理可能会导致图像失真和信息丢失,因此在应用图像平滑处理时需要权衡处理效果和影响。

均值滤波

定义:

均值滤波是指用当前像素点周围 N·N 个像素值的均值来代替当前像素值。使用该方法遍历处理图像内的每一个像素点,即可完成整幅图像的均值滤波。

例如,希望对图 下图 中位于第 5 行第 5 列的像素点进行均值滤波。

图2
在进行均值滤波时,首先要考虑需要对周围多少个像素点取平均值。通常情况下,我们会
以当前像素点为中心,对行数和列数相等的一块区域内的所有像素点的像素值求平均。例如,
在上图 中,可以以当前 226 像素点为中心,对周围 3×3 区域内所有像素点的像素值求平均,也可以对周围 5×5 区域内所有像素点的像素值求平均。

当前像素点的位置为第 5 行第 5 列,我们对其周围 5×5 区域内的像素值求平均,计算方法为:

新值=[(197+25+106+156+159)+
(149+40+107+5+71)+
(163+198+226+223+156)+
(222+37+68+193+157)+
(42+72+250+41+75)]/25
=126

计算完成后得到 126,我们将 126 作为当前像素点均值滤波后的像素值。我们针对上图 中的每一个像素点计算其周围 5×5 区域内的像素值均值,并将其作为当前像素点的新值,即可
得到当前图像的均值滤波结果。

当然,图像的边界点并不存在 5×5 邻域区域。例如,左上角第 1 行第 1 列上的像素点,其像素值为 23,如果以其为中心点取周围 5×5 邻域,则 5×5 邻域中的部分区域位于图像外部。
图像外部是没有像素点和像素值的,显然是无法计算该点的 5×5 邻域均值的。
针对边缘像素点,可以只取图像内存在的周围邻域点的像素值均值。

如图 7-8 所示,计算
左上角的均值滤波结果时,仅取图中灰色背景的 3×3 邻域内的像素值的平均值。

在这里插入图片描述

在图 7-8 中,对于左上角(第 1 行第 1 列)的像素点,我们取第 1~3 列与第 1~3 行交汇处
所包含的 3×3 邻域内的像素点的像素值均值。因此,当前像素点的均值滤波计算方法为:

新值=[(23+158+140)+
(238+0+67)+
(199+197+25)]/9
=116

计算完成后得到 116,将该值作为该点的滤波结果即可

除此以外,还可以扩展当前图像的周围像素点。例如,将当前 9×7 大小的图像扩展为 13×11大小的图像,如图 7-9 所示。

在这里插入图片描述
完成图像边缘扩展后,可以在新增的行列内填充不同的像素值。在此基础上,再针对 9×7的原始图像计算其 5×5 邻域内像素点的像素值均值。OpenCV 提供了多种边界处理方式,我们可以根据实际需要选用不同的边界处理模式。

针对图像中第 5 行第 5 列的像素点,其运算过程相当于与一个内部值都是 1/25 的 5×5 矩阵进行相乘计算,从而得到均值滤波的结果 126,其对应的关系如图 7-10 所示

在这里插入图片描述

根据上述运算,针对每一个像素点,都是与一个内部值均为 1/25 的 5×5 矩阵相乘,得到均值滤波的计算结果,如图 7-11 所示。

在这里插入图片描述

将使用的 5×5 矩阵一般化,可以得到如图 7-12 所示的结果。

在这里插入图片描述
OpenCV 中,图 7-12 右侧的矩阵被称为卷积核,其一般形式为:
在这里插入图片描述
式中,M 和 N 分别对应高度和宽度。一般情况下,M 和 N 是相等的,例如比较常用的 3×3、5×5、
7×7 等。如果 M 和 N 的值越大,参与运算的像素点数量就越多,图像失真越严重。

函数语法

OpenCV 中,实现均值滤波的函数是 cv2.blur(),其语法格式为:

dst = cv2.blur( src, ksize, anchor, borderType )

式中:

 dst 是返回值,表示进行均值滤波后得到的处理结果。

 src 是需要处理的图像,即原始图像。它可以有任意数量的通道,并能对各个通道独立处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。

 ksize 是滤波核的大小。滤波核大小是指在均值处理过程中,其邻域图像的高度和宽度。

例如,其值可以为(5, 5),表示以 5×5 大小的邻域均值作为图像均值滤波处理的结果,
如下式所示。

在这里插入图片描述
anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。该值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。
 borderType 是边界样式,该值决定了以何种方式处理边界,其值如表 7-1 所示。一般情
况下不需要考虑该值的取值,直接采用默认值即可。

在这里插入图片描述
通常情况下,使用均值滤波函数时,对于锚点 anchor 和边界样式 borderType,直接采用其
默认值即可。因此,函数 cv2.blur()的一般形式为:

dst = cv2.blur( src, ksize,)

实验: 读取一幅噪声图像,使用函数 cv2.blur()对图像进行均值滤波处理,得到去噪图像,并显示原始图像和去噪图像

实验原图

在这里插入图片描述

import cv2
o=cv2.imread("lenaNoise.png") #读取待处理图像
#使用 blur 函数处理图像
r=cv2.blur(o,(5,5)) 
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

运行上述程序后,会分别显示噪声图像(左图)和去噪图像(右图)

在这里插入图片描述

实验2:针对噪声图像,使用不同大小的卷积核对其进行均值滤波,并显示均值滤波的情况。

调整设置函数 cv2.blur()中的 ksize 参数,示例代码如下

代码如下:

import cv2
o=cv2.imread("lenaNoise.png") #读取待处理图像
#使用 blur 函数处理图像
r3=cv2.blur(o,(3,3))
r5=cv2.blur(o,(5,5))
r7=cv2.blur(o,(7,7))
cv2.imshow("original",o)
cv2.imshow("result3",r3)
cv2.imshow("result5",r5)
cv2.imshow("result7",r7)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
从结果图中可以看出,卷积核越来,图片会越模糊.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/57273.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis的订阅者和发布者模式、主从双备和密码认证

四、Redis的订阅者和发布者模式、主从双备和密码认证 1、Redis的订阅者和发布者模式 两个数据库,一个是10,一个是15。订阅频道: 向频道推数据: 接收到数据: 2、redis的高可用(HA)主从双备 模拟…

idea application.yml配置文件没有提示或读不到配置

1.首先确定你的resources文件夹正常且yml文件图表和下面一样 不一样的右键去设置 2.确保你已经缩进了且层级关系正常 3.如果以上都不是,先考虑删除.idea重开试试 4.以上解决不了就装以下两个插件解决

vue - 【完整源码】实现评论区发表评论、回复评论、评论盖楼等功能,前端PC网站/移动端H5实现多用户评论与回复功能(详细示例源码,一键复制开箱即用)

效果图 在vue项目开发中,实现一个类似社交软件的评论区发表留言及回复等评论功能效果,可以无限回复盖楼。 一、功

Hololens2二维码识别

配置 目前大部分Hololens进行二维码识别的开发都是基于ZXing的包完成,首先需要完成zxing.unity.dll,很多地方应该都能下载,也可以直接上github上下载(下载点这里)。 下载时注意一下版本就好,过老的zxing兼…

Leetcode-每日一题【剑指 Offer 39. 数组中出现次数超过一半的数字】

题目 数组中有一个数字出现的次数超过数组长度的一半&#xff0c;请找出这个数字。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 示例 1: 输入: [1, 2, 3, 2, 2, 2, 5, 4, 2]输出: 2 限制&#xff1a; 1 < 数组长度 < 50000 解题思路 前置知…

无人机电力巡检方案在电网安全与维护中的应用

目前&#xff0c;无人机技术已经在各行各业都有广泛的应用&#xff0c;其中之一就是在电力巡检中的应用。无人机电力巡检方案以其高效、安全、精准的特点&#xff0c;为电网安全与维护带来了重大突破和进步。 一、无人机电力巡检方案是高效巡检的利器 传统的电力巡检方式需要人…

【深度学习】Vision Transformer论文,ViT的一些见解《 一幅图像抵得上16x16个词:用于大规模图像识别的Transformer模型》

必看文章&#xff1a;https://blog.csdn.net/qq_37541097/article/details/118242600 论文名称&#xff1a; An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale 论文下载&#xff1a;https://arxiv.org/abs/2010.11929 官方代码&#xff1a;https:…

Libevent开源库的介绍与应用

libeventhttps://libevent.org/ 一、初识 1、libevent介绍 Libevent 是一个用C语言编写的、轻量级的开源高性能事件通知库&#xff0c;主要有以下几个亮点&#xff1a;事件驱动&#xff08; event-driven&#xff09;&#xff0c;高性能;轻量级&#xff0c;专注于网络&#xff…

RocketMQ 事务消息

事务消息是 RocketMQ 的高级特性之一 。这篇文章&#xff0c;笔者会从应用场景、功能原理、实战例子三个模块慢慢为你揭开事务消息的神秘面纱。 1 应用场景 举一个电商场景的例子&#xff1a;用户购物车结算时&#xff0c;系统会创建支付订单。 用户支付成功后支付订单的状态…

微信小程序选项卡切换(滑动切换,点击切换)

效果如下&#xff1a;可点击切换&#xff0c;滑动切换 代码如下 这个可以在项目用 index.wxml <view classtopTabSwiper><view classtab {{currentData 0 ? "tabBorer" : ""}} data-current "0" bindtapcheckCurrent>选项一&…

警惕!中科院预警,Frontiers这本不被收录!2023年7月EI目录已更新!(附全年下载)

2023年7月EI期刊目录更新 爱思唯尔官网近日更新了EI期刊目录&#xff0c;此次更新是2023年7月1日&#xff0c;与上次更新&#xff08;2023年6月&#xff09;相比&#xff0c;有1本期刊名称在Serials&#xff08;连续出版&#xff09;列表中搜索不到&#xff0c;详情如下&#…

Java课题笔记~ 动态SQL详解

一、动态 sql 是什么&#xff1f; 1、动态 SQL 是 MyBatis 的强大特性之一。在 JDBC 或其它类似的框架中&#xff0c;开发人员通常需要手动拼接 SQL 语句。根据不同的条件拼接 SQL 语句是一件极其痛苦的工作。 例如&#xff0c;拼接时要确保添加了必要的空格&#xff0c;还要…

AgileBoot - 全栈项目启动

AgileBoot-Back-End: 基于Ruoyi做了大量重构优化的基础快速开发框架。采用Springboot Vue 3 Mybatis Plus 更面向对象的业务建模 面向生产的项目。&#xff08;非玩具项目&#xff09; 首先克隆代码&#xff0c;同是克隆前端和后端的代码。 前端代码启动&#xff1a; np…

阿里云容器服务 Serverless 版(ACK Serverless)全新升级

7 月 31 日&#xff0c;阿里云智能云原生应用平台负责人丁宇宣布&#xff0c;容器服务 Serverless 版 ACK Serverless 全新升级。 ACK Serverless&#xff1a;免运维、极致弹性的 K8s 全托管服务 阿里云在 2018 年发布了首个 Serverless 容器服务 ASK&#xff0c;其本质是将容…

音视频--DTMF信号发送及检测

参考资料 https://zh.wikipedia.org/wiki/%E5%8F%8C%E9%9F%B3%E5%A4%9A%E9%A2%91 1. DTMF是什么 1.1 DTMF定义 双音多频信号&#xff08;英语&#xff1a;Dual-Tone Multi-Frequency&#xff0c;简称&#xff1a;DTMF&#xff09;&#xff0c;电话系统中电话机与交换机之间…

list删除重复元素几种思路

文章目录 list删除重复元素几种思路hashsetStream流删除所有重复元素 list删除重复元素几种思路 hashset List<String> list2 new ArrayList<>();list2.add("a");list2.add("b");list2.add("a");Set<String> set new HashS…

uni-app 微信小程序自定义导航栏

一、效果图 二、导航栏的组成 上面的导航栏主要由状态栏&#xff08;就是手机电量显示栏&#xff09;和小程序的导航栏组成&#xff0c;android手机一般为48px&#xff0c;ios手机一般为44px 三、开发步骤 1、设置navigationStyle:custom {"path": "pages/v…

1.初识typescript

在很多地方的示例代码中使用的都是ts而不是js&#xff0c;为了使用那些示例&#xff0c;学习ts还是有必要的 JS有的TS都有&#xff0c;JS与TS的关系很像css与less ts在运行前需要先编译为js&#xff0c;浏览器不能直接运行ts 目录 1 编译TS的工具包 1.1 安装 1.2 基本…

【力扣】 12. 整数转罗马数字 模拟

力扣 12. 整数转罗马数字 解题思路 当某个位数的某个数不为4或9时&#xff0c;高位对应的字符总是在低位对应的字符前面。只有当该数为4或9时&#xff0c;低位对应的字符在高位前面。 根据这一特性&#xff0c;我们进行分类讨论。 1.当数为4时&#xff0c;则对应的罗马数为 10 …

有多卷?智慧金融可视化大屏可以这样子

科学技术不断发展&#xff0c;数字化转型不断加快&#xff0c;智慧金融正成为金融业的新引擎。数字孪生、大数据、物联网等新一代信息技术在推动智慧金融更加强调效率、优化精准营销。数据可视化大屏如何为金融单位提供低代码、定制化的服务&#xff0c;让金融单位的数据可视、…