知识图谱嵌入领域的重要研究:编辑基于语言模型的知识图谱嵌入

今天,向大家介绍一篇在知识图谱嵌入领域具有重要意义的研究论文——Editing Language Model-based Knowledge Graph Embeddings。这项工作由浙江大学和腾讯公司的研究人员联合完成,为我们在动态更新知识图谱嵌入方面提供了新的视角和方法。

研究背景

在当今的人工智能领域,知识图谱作为一种丰富的结构化知识库,对于驱动智能应用如搜索引擎、推荐系统和问答机器人等发挥着至关重要的作用。它通过将现实世界中的实体和关系映射为图谱中的节点和边,为机器提供了一种强有力的知识表示方式。

然而,随着时间的推移和社会的演进,知识图谱面临着一个显著挑战:如何有效地应对知识更新的需求?在现实世界中,新的实体不断出现,实体间的关系也会发生变化,这就要求我们的知识图谱能够灵活地反映这些动态变化。

传统的知识图谱嵌入方法,如TransE或RotatE,通常在模型部署后难以进行更新。当知识图谱更新时,这些方法往往需要重新训练整个模型,这不仅耗时,而且计算成本高昂。此外,随着预训练语言模型的兴起,基于这些模型的KG嵌入方法虽然在表示能力上取得了进步,但在知识更新的灵活性上仍然存在局限。

因此,如何设计出一种机制,使得基于语言模型的知识图谱嵌入能够在不重新训练整个模型的情况下,快速适应知识的更新,成为了一个亟待解决的问题。这正是本论文所要探讨的核心议题。

研究方法

为了实现这一目标,论文提出了以下几个关键的研究方法:

研究任务的创新定义

作者们首先定义了两个关键的研究任务:EDITADD。这两个任务分别针对知识图谱嵌入中的错误知识修正和新知识添加。EDIT任务关注于如何准确地纠正KG嵌入中已经存在的错误知识,而ADD任务则着眼于如何将新出现的知识有效地整合进已有的KG嵌入中。这两个任务的提出,为动态更新KG嵌入提供了明确的目标和方向。

数据集的精心构建

为了全面评估所提出方法的性能,作者们构建了四个新的数据集,这些数据集基于两个广泛使用的知识图谱:FB15k237WN18RR。这些数据集经过精心设计,包含了需要编辑或添加的知识,为实验提供了标准化的测试平台。通过这些数据集,研究者能够系统地评估模型在编辑和添加知识时的准确性、效率和对现有知识的保护。

KGEditor模型的创新设计

KGEditor模型是这篇论文的核心贡献之一,它是一个利用超网络(Hypernetwork)来动态编辑KG嵌入的框架。KGEditor的核心思想是通过在超网络中学习额外的参数层,对KG嵌入的实体和关系表示进行精确的调整,而无需重新训练整个模型。

超网络结构的巧妙应用

超网络在KGEditor中扮演着至关重要的角色。它通过学习输入知识的特定模式,生成额外的参数层,这些参数层随后被用来调整KG嵌入中的实体和关系表示。这种方法不仅能够实现对特定知识的快速更新,而且能够保持对其他知识的最小干扰。

编辑知识的效率和效果

KGEditor模型在参数数量和计算时间上均优于现有的基线方法,这表明它在知识编辑上具有更高的效率。此外,通过一系列实验,作者们证明了KGEditor在保持知识局部性的同时进行知识更新方面表现出色,这意味着KGEditor能够在不破坏其他知识表示的前提下,有效地编辑特定的知识。

评估指标的全面设计

为了全面评估编辑操作的效果,作者们设计了一套评估指标,包括知识可靠性(Knowledge Reliability)、知识局部性(Knowledge Locality)和知识效率(Knowledge Efficiency)。这些指标从不同角度衡量了编辑操作的质量和效率,为比较不同编辑方法提供了科学的依据。

实验结果

实验结果表明,KGEditor在多个评估指标上均优于现有技术,特别是在保持知识局部性的同时进行知识更新方面表现出色。此外,KGEditor在参数数量和计算效率上也具有明显优势。

知识可靠性的验证

作者们首先评估了KGEditor在EDIT和ADD任务上的知识可靠性。通过计算Success@1指标,即在所有需要编辑的三元组中,KGEditor能够准确预测正确实体的比例,实验结果显示KGEditor在两个任务上都取得了高成功率。这意味着KGEditor能够有效地修正错误知识(EDIT任务)和整合新知识(ADD任务)。

知识局部性的考察

接下来,作者们考察了KGEditor在编辑操作中的知识局部性。通过计算Retain Knowledge (RK@k)指标,即在模型编辑后,原有正确知识被保留的比例,实验结果表明KGEditor在编辑特定知识时,对其他知识的影响很小。这验证了KGEditor在进行知识编辑时,能够保持对其他知识的最小干扰,体现了良好的知识局部性。

知识编辑效率的评估

在知识编辑效率方面,作者们比较了KGEditor和其他基线方法在参数数量和计算时间上的差异。实验结果表明,KGEditor在参数数量上更为精简,在计算时间上也更短。这表明KGEditor在知识编辑上具有更高的效率,能够在更短的时间内,用更少的计算资源完成知识更新。

模型扩展性的探索

此外,作者们还探讨了编辑多个知识点对KGEditor性能的影响。通过逐步增加需要编辑的三元组数量,作者们评估了KGEditor处理更复杂编辑任务的能力。实验结果显示,KGEditor能够稳定地处理一定数量的编辑操作,而不会显著降低模型性能。这验证了KGEditor在处理更大规模知识编辑任务时的扩展性。

实验的深入分析

在实验分析部分,作者们还深入探讨了影响KGEditor性能的多个因素:

  1. 编辑操作的数量: 实验结果表明,KGEditor能够稳定地处理一定数量的编辑操作,但当编辑操作的数量超过一定阈值时,模型性能会有所下降。这提示我们在实际应用中需要合理控制单次编辑操作的数量。

  2. 不同KGEmbedding初始化方法: 论文还比较了不同的KGEmbedding初始化方法(如FT-KGE和PT-KGE)对KGEditor性能的影响。结果表明,基于提示(prompt-based)的模型更适合于编辑任务,这可能是因为提示能够更有效地利用语言模型的知识表示能力。

  3. 实体和关系的复杂性: 对于涉及多对多关系和复杂知识的编辑操作,KGEditor展现了一定的鲁棒性,但仍有改进空间。这提示我们在设计KGEditor时,需要考虑如何处理更复杂的知识关系。

这项研究为知识图谱嵌入的动态更新提供了一种有效的解决方案,对于促进知识的动态更新和维护具有重要意义。未来的研究可以在此基础上进一步探索,例如处理更复杂的知识关系,或者将这种编辑技术应用到更大规模的语言模型中。

建议大家去看看原论文:

论文作者:程思源(浙江大学)、张宁豫(浙江大学)、田博中(浙江大学)、陈曦(腾讯)、刘庆斌(腾讯)、陈华钧(浙江大学)

发表会议:AAAI 2024

论文链接:https://arxiv.org/abs/2301.10405

代码链接:https://github.com/zjunlp/PromptKG/tree/main/deltaKG

Demo链接:https://huggingface.co/spaces/zjunlp/KGEditor

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/570108.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux安装MongoDB超详细

Linux端安装 我们从MonDB官网下载Linux端的安装包,建议下载4.0版本 打开虚拟机,在虚拟机上安装传输工具lrzsz,将下载好的.tgz包拖到虚拟机当中,拖到/usr/local/mongoDB目录下, [rootserver ~]# yum install -y lrzsz [rootser…

如何使用 Vercel 托管静态网站

今天向大家介绍 Vercel 托管静态网站的几种方式,不熟悉 Vercel 的伙伴可以看一下之前的文章:Vercel: 开发者免费的网站托管平台 Github 部署 打开 Vercel 登录界面,推荐使用 GitHub账号 授权登录。 来到控制台界面,点击 Add New …

四川古力未来科技抖音小店:科技新宠,购物新体验

在当下数字化、智能化的时代,电商平台如雨后春笋般涌现,其中不乏一些富有创新精神和实力雄厚的科技企业。四川古力未来科技有限公司就是其中的佼佼者,其抖音小店更是凭借其独特的魅力和优质的服务,赢得了广大消费者的青睐。 一、科…

6步教你APP广告高效变现,收益翻倍秘诀大揭秘!

移动应用广告变现最佳实践与策略指南 在移动应用市场中,广告变现已成为开发者和公司获取收益的重要途径。然而,如何在保证用户体验的同时,实现广告收入的最大化,成为了众多开发者和公司面临的挑战。本文将为您介绍一些最佳的实践…

Seal^_^【送书活动第2期】——《Flink入门与实战》

Seal^_^【送书活动第2期】——《Flink入门与实战》 一、参与方式二、本期推荐图书2.1 作者简介2.2 编辑推荐2.3 前 言2.4 本书特点2.5 内容简介2.6 本书适用读者2.7 书籍目录 三、正版购买 一、参与方式 评论:"掌握Flink,驭大数据,实战…

nginx配置https及wss

环境说明 服务器的是centos7 nginx版本nginx/1.20.1 springboot2.7.12 nginx安装教程点击这里 微信小程序wss配置 如果您的业务是开发微信小程序&#xff0c; 请先进行如下配置。 boot集成websocket maven <dependency><groupId>org.springframework.boot<…

APP UI自动化测试,思路全总结在这里了

首先想要说明一下&#xff0c;APP自动化测试可能很多公司不用&#xff0c;但也是大部分自动化测试工程师、高级测试工程师岗位招聘信息上要求的&#xff0c;所以为了更好的待遇&#xff0c;我们还是需要花时间去掌握的&#xff0c;毕竟谁也不会跟钱过不去。 接下来&#xff0c…

Microsoft Edge:探索你可能未充分利用的8个实用功能

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

实时数据同步工具的真正作用和对应应用场景

在当今商业环境中&#xff0c;企业规模的不断扩大带来了对数据同步的更高要求。实时数据同步解决方案对于确保数据的一致性、提升业务灵活性以及增强决策的精准度具有关键作用。 本文将深入分析实时数据同步技术的关键优势&#xff0c;并探讨其在不同行业场景下的应用价值&…

复习python函数

复习python函数 1.对函数的理解函数的传递方式返回值 return可通过help()函数查看函数说明作用域 2.不定长参数3.递归4.高阶函数将函数作为参数传递将函数作为返回值返回 5.匿名函数6.装饰器 1.对函数的理解 函数可以用来保存一些可执行的代码&#xff0c;并且可以在需要时&am…

前端Vue中async/await、promise 和setTimeout工作原理和执行顺序

前端Vue中async/await、Promise 和 setTimeout 在 JavaScript 中都是处理异步操作的方法&#xff0c;但它们的工作原理和执行顺序有所不同。以下是它们的执行顺序和关系的简要说明&#xff1a; 同步代码执行&#xff1a;在任何异步操作开始之前&#xff0c;首先会执行所有的同步…

vr太阳光参数怎么设置,vr快速渲染方法

VR场景中实现逼真的光照效果&#xff0c;太阳光参数的设置尤为关键。真实的太阳光可提升效果图的质感&#xff0c;论VR太阳光参数的设置技巧&#xff0c;包括光源类型选择、光照强度调整、阴影效果优化等多个方面&#xff0c;喜爱一起来看看vr太阳光真实感设置参数吧。 vr太阳光…

大数据信用风险竟然是这样形成的!查询方法也很简单

在大数据时代背景下&#xff0c;大数据信用风险成为了众多机构关注的焦点。这类风险涵盖了多头借贷、履约行为、联系人以及司法等多个方面。本文将深入解析大数据信用风险的形成原因及其查询方法&#xff0c;让我们一起来探索一下。 大数据信用风险主要表现在以下几个方面&…

Python-GEE遥感云大数据分析、管理与可视化

原文链接&#xff1a;Python-GEE遥感云大数据分析、管理与可视化https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247601238&idx2&sn6b0557cf61451eaff65f025d648da869&chksmfa820db1cdf584a76de953b96519704177e6206d4ecd47a2f2fabbcac2f7ea619b0bce184…

Ubuntu镜像下载与安装2024.4版本(超适合新手)

前言&#xff1a; 在VMware中安装Ubuntu镜像&#xff0c;首先需要去下载镜像&#xff0c;但是由于服务器在国外&#xff0c;下载速度相对较慢&#xff0c;国内也有镜像&#xff0c;较推荐在国内镜像站下载&#xff0c;例如阿里镜像和清华镜像。 官网&#xff1a;Ubuntu系统下…

华为 2024 届实习校园招聘-硬件通⽤/单板开发——第八套

华为 2024 届实习校园招聘-硬件通⽤/单板开发——第八套 部分题目分享&#xff0c;完整版带答案(有答案和解析&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09;&#xff08;共十套&#xff09;获取&#xff08;WX:didadidadidida313&#xff0c…

hover显示播放遮罩层效果

我们都知道视频列表其实是一个封面列表,鼠标放上去时,有反馈:即hover时显示播放遮罩层,点击,跳转到对应的视频播放页。这是目前主流视频网站的一个通用效果。 我们在实现时应该理清思路: 1、每个视频位置处放的是封面图片 2、播放按钮遮罩层需完全覆盖封面图片,并且正…

vLLM-prefix浅析(System Prompt,大模型推理加速)

原文&#xff1a;vLLM-prefix浅析&#xff08;System Prompt&#xff0c;大模型推理加速&#xff09; 简介 本文浅析了在大模型推理加速方面一个非常优秀的项目 vLLM 的一个新特性 Prefix。在 Prompt 中有相同前缀时可以提高吞吐量降低延迟&#xff0c;换句话说可以省去这部分…

【做算法学数据结构】二叉树的层序遍历【二叉树】

文章目录 题目二叉树二叉树描述二叉树的java描述和前序遍历、后序遍历、中序遍历 题解总结以及二叉树应用场景 题目 给你二叉树的根节点 root &#xff0c;返回其节点值 自底向上的层序遍历 。 &#xff08;即按从叶子节点所在层到根节点所在的层&#xff0c;逐层从左向右遍历…

德思特GNSS模拟器为物流行业保驾护航

作者介绍 一、前言 德思特GNSS模拟器能够在最短的时间内高效、准确的协助完成虹科MSR运输数据记录仪的定位准确性以及抗干扰能力测试&#xff0c;确保在运输或存储过程中&#xff0c;让用户知道何时何地发生了超出预设公差范围的事件&#xff0c;快速、准确的记录定位数据&…