基于harris角点和RANSAC算法的图像拼接matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

.......................................................................
I1_harris   = func_harris(img1,3,para_harris,scales);% 使用自定义函数计算 img1 的角点响应
I2_harris   = func_harris(img2,3,para_harris,scales);% 使用自定义函数计算 img2 的角点响应
.........................................................................
% RANSAC 方法参数设定
% RANSAC 迭代次数
Miter = 500;
% 内点距离阈值
lvls  = 0.003;
% 最小内点数量要求
nums  = 10;
% RANSAC
[ransac_points,~]=func_ransac(harris_p1,harris_p2,mpoint,Miter,lvls,nums);
 
% 存储 RANSAC 匹配得到的正确匹配点坐标
Lens         =length(ransac_points);
X1_r=zeros(1,Lens);
Y1_r=zeros(1,Lens);
X2_r=zeros(1,Lens);
Y2_r=zeros(1,Lens);

for i=1:Lens
    p1=ransac_points(i,1);
    p2=ransac_points(i,2);
    X1_r(i)=x1(p1);
    Y1_r(i)=y1(p1);
    X2_r(i)=x2(p2);
    Y2_r(i)=y2(p2);
end

figure
subplot(1,2,1);
imshow(img1);
title('RANSAC匹配点')
hold on;
plot(Y1_r,X1_r,'ro');

subplot(1,2,2);
imshow(img2);
title('RANSAC匹配点')
hold on;
plot(Y2_r,X2_r,'go');
% 合成一幅图像展示 RANSAC 匹配结果
figure
img_match=[img1,img2];
imshow(img_match);
title('匹配结果')
hold on;
plot(Y1_r,X1_r,'rx','LineWidth',1,'MarkerSize',8);
plot(Y2_r+size(img1,2),X2_r,'gx','LineWidth',1,'MarkerSize',8);

Xm1_ransac=X1_r; 
Ym1_ransac=Y1_r;
match1=zeros(Lens,2);
match1(:,1)=Xm1_ransac; 
match1(:,2)=Ym1_ransac;

Xm2_ransac=X2_r;
Ym2_ransac=Y2_r+size(img1,2);
match2=zeros(Lens,2);
match2(:,1)=Xm2_ransac; 
match2(:,2)=Ym2_ransac;
% 绘制匹配线段连接匹配点
for i=1:Lens
    hold on;
    plot([match1(i,2) match2(i,2)], [match1(i,1) match2(i,1)],'LineWidth',1)
end
% 计算 RANSAC 方法得到的仿射变换矩阵
H_ransac = func_affine(X2_r,Y2_r,X1_r,Y1_r);
 

%生成一张新的全景图
[I1_ransac,I2_ransac]=func_trans(img1,img2,H_ransac);

 

figure
I_ransac= I1_ransac+I2_ransac ;
imshow(I_ransac);
title('RANSAC拼接结果')
128

4.算法理论概述

       Harris角点检测是一种局部特征检测方法,它寻找图像中具有显著局部曲率变化的位置,即边缘转折点或角点。主要通过计算图像窗口内的自相关矩阵M,并对其特征值进行评估。Harris响应函数H由自相关矩阵M的两个主特征值 λ1​ 和λ2​ 计算得到:

当H值较大时,窗口内像素的变化足够大,表明可能存在角点。

       在图像拼接过程中,RANSAC用于在两幅图像的重叠区域找到正确的对应点对,即使数据中存在大量噪声和异常点。

1.随机选择一组候选点对作为基础模型(通常是仿射或透视变换模型),计算此模型参数。

2.应用模型参数A预测所有剩余点对是否符合模型,统计一致样本数。

3.重复步骤1和2一定次数(迭代次数T),选取一致样本数最多的模型作为最优模型。

4.设定阈值(如变换残差阈值t),确定最终的内点集合(即那些变换误差小于阈值的所有点对)。

5.使用内点集合重新估计变换参数,以提高精度。

综上所述,图像拼接流程:

  1. 在每幅图像中检测Harris角点,并提取特征描述符。
  2. 利用匹配算法(如SIFT、SURF等)在重叠区域找到对应的角点对。
  3. 应用RANSAC算法找出最优变换模型。
  4. 根据最优变换模型对一幅图像进行几何校正,使两幅图像的重叠部分对齐。
  5. 最后,对齐后的图像通过融合算法(如加权平均、高斯金字塔融合等)拼接成全景图像。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/567629.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL]】数据库操作指南之数据库的基础操作

🌱博客主页:青竹雾色间 🌱系列专栏:MySQL探险日记 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 ✨人生如寄,多忧何为 ✨ 文章目录 1. 创建数据库2.数据库的编码集与校验集2.1 编码集 (Character…

嵌入式Python基础1-2

嵌入式Python基础1-2 条件语句 if elif else 随机数random eval while循环 for循环 水仙花数 循环else list 列表常用方法 增删改查 加排序 append remove pop index() 升序sort()降序 sort(reverseTrue) 反转 reverse()…

ESP32开发

1、简介 1.1 种类 WIFI模块在PC上做为客户端、服务器,在STM32上做服务器的通讯。在物联网应用开发有重要作用,种类居多,如下图 红色方框的esp8266-01s型号的无限wifi模块就是本章学习的主要对象。 1.2 特点 小巧的尺寸:ESP-01…

SpanBert学习

SpanBERT: Improving Pre-training by Representing and Predicting Spans 核心点 提出了更好的 Span Mask 方案,也再次展示了随机遮盖连续一段字要比随机遮盖掉分散字好;通过加入 Span Boundary Objective (SBO) 训练目标,增强了 BERT 的性…

python自动生成SQL语句自动化

👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python自动生成SQL语句自动化 在数据处理和管理中,SQL(Structured …

WAF防范原理

目录 一、什么是WAF 二、纵深安全防御 WAF的组网模式 WAF配置全景 WAF端 服务器 攻击端 拦截SQL注入,XSS攻击,木马文件上传 要求: 使用WAF,通过配置策略要求能防御常见的web漏洞攻击(要求至少能够防御SQL、XSS、文…

毕业设计注意事项

1.开题 根据学院发的开题报告模板完成,其中大纲部分可参考资料 2.毕设 根据资料中的毕设评价标准,对照工作量 3.论文 3.1 格式问题 非常重要,认真对比资料中我发的模板,格式有问题,答辩输一半! 以word…

wireshark RTP分析参数

主要看丢弃和Delta, 丢弃就是丢掉的udp包,所占的比率 Delta是当前udp包接收到的时间减去上一个udp包接收到的时间 根据载荷可以知道正确的delta应该是多少,比如G711A,ptime20,那么delta理论上应该趋近于20. 这里的de…

C++面向对象程序设计 - 运算符重载

函数重载就是对一个已有的函数赋予新的含义,使之实现新的功能。因此一个函数名就可以用来代表不同功能的函数,也就是一名多用。运算符也可以重载,即运算符重载(operator overloading)。 一、运算符重载的方法 运算符重…

# IDEA2019 如何打开 Run Dashboard 运行仪表面板

IDEA2019 如何打开 Run Dashboard 运行仪表面板 段子手168 1、依次点击 IDEA 上面工具栏 —> 【View】 视图。 —> 【Tool Windows】 工具。 —> 【Run Dashboard】 运行仪表面板。 2、如果 【Tool Windows 】工具包 没有 【Run Dashboard】 运行仪表面板 项 依次…

【好书推荐7】《机器学习平台架构实战》

【好书推荐7】《机器学习平台架构实战》 写在最前面《机器学习平台架构实战》编辑推荐内容简介作者简介目  录前  言本书读者内容介绍充分利用本书下载示例代码文件下载彩色图像本书约定 🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光&…

STM32系统参数和结构

系列文章目录 STM32单片机系列专栏 C语言术语和结构总结专栏 文章目录 1. 基本参数 2. 片上资源(外设) 3. STM32系列命名规则 4. 系统结构 5. 引脚定义 6. 启动配置 7. 最小系统电路 8. 型号分类和缩写 1. 基本参数 STM32F103C8T6 系列&#…

达梦(DM)数据库表索引

达梦DM数据库表索引 表索引索引准则其他准则 创建索引显式地创建索引其他创建索引语句 使用索引重建索引删除索引 表索引 达梦数据库表索引相关内容比较多,常用的可能也就固定的一些,这里主要说一下常用的索引,从物理存储角度进行分类&#…

B008-方法参数传递可变参数工具类

目录 方法参数传递可变参数冒泡排序Arrays工具类Arrays工具类常用方法 方法参数传递 /*** java中只有值传递* 基本数据类型 传递的是具体的值* 引用数据类型 传递的是地址值*/ public class _01_ParamPass {public static void main(String[] args) {// 调用方法 getSumge…

网络变压器在网络分析仪上能通过测试,装上设备后网速达不到呢?

Hqst华轩盛(石门盈盛)电子导读:今天和大家一起探讨网络变压器在网络分析仪上能通过测试,装上设备后网通设备网速达不到的可能原因及其处理方式 一、出现这种情况可能有以下原因: 1.1. 设备兼容性问题:设备其它元器件与 网络…

Docker容器化技术:概述与安装

目录 一、云基础知识 1、常见的云服务厂商 2、云计算服务模式三种层次 3、什么是虚拟化 4、什么是虚拟机 5、虚拟化产品 5.1 仿真虚拟化产品 5.2 半虚拟化产品 5.3 全虚拟化产品 6、虚拟机架构 6.1 寄居架构 6.2 源生架构 二、认识容器 1、容器的概述 2、容器的…

【Netty】ByteBuf与拆包粘包

ByteBuf 在介绍ByteBuf之前先来一套基础的代码来演示ByteBuf的使用。 package blossom.project.netty;import io.netty.buffer.ByteBuf; import io.netty.buffer.Unpooled;import java.nio.charset.StandardCharsets;/*** author: ZhangBlossom* date: 2023/12/14 13:37* con…

web学习

day02-01 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>js快速引入</title> <!-- 内部脚本--> <!-- <script>--> <!-- alert(Hello JS)--> <!-- <…

【linux】匿名管道|进程池

1.进程为什么要通信&#xff1f; 进程也是需要某种协同的&#xff0c;所以如何协同的前提条件(通信) 通信数据的类别&#xff1a; 1.通知就绪的 2.单纯的数据 3.控制相关的信息 2.进程如何通信&#xff1f; 进程间通信&#xff0c;成本会高一点 进程间通信的前提&#xff0c;先…

制氢机远程监控运维方案

制氢机远程监控运维方案 在当今能源转型的大背景下&#xff0c;氢能作为清洁、高效且可再生的能源载体&#xff0c;其重要性日益凸显。而制氢机作为氢能产业链中的关键设备&#xff0c;其稳定运行与高效运维对于保障氢气供应、推动氢能产业健康发展至关重要。在此背景下&#…