Pytorch:张量的梯度计算

目录

    • 一、自动微分简单介绍
      • 1、基本原理
      • 2、梯度计算过程
      • 3、示例:基于 PyTorch 的自动微分
        • a.示例详解
        • b.梯度计算过程
        • c.可视化计算图
      • 4、总结
    • 二、为什么要计算损失,为何权重更新是对的?
      • 1、梯度下降数学原理
      • 2、梯度上升
    • 三、在模型中使用自动微分

前向传播、反向传播教程:包含梯度计算理解
前馈神经网络:

  • 前向传播:输入信号 输入模型计算 得到输出的过程
  • 反向传播:将损失的梯度回传,传播误差,从而更新每层权重参数的过程。本质上是利用(求导的)链式法则,计算损失函数对所有参数的梯度。
    • 新的权重 = 旧的权重 − 学习率 × 梯度 新的权重=旧的权重−学习率×梯度 新的权重=旧的权重学习率×梯度

一、自动微分简单介绍

  在 PyTorch 中,张量的自动微分功能是通过一个叫做自动微分(Automatic Differentiation,简称 AD)的系统实现的。自动微分是一种用于自动计算导数的技术,它在机器学习和深度学习中扮演着核心角色,特别是在神经网络的训练过程中计算梯度时。

1、基本原理

  在 PyTorch 中,每个 torch.Tensor 对象都有一个 requires_grad 属性;如果设置为 True,PyTorch 会跟踪所有对该张量的操作。当完成计算后,你可以调用 .backward() 来自动计算所有梯度,这些梯度会累积到相应张量的 .grad 属性中。

2、梯度计算过程

当你对一个输出张量执行 .backward() 时,PyTorch 会进行如下步骤:

  1. 反向传播:从输出张量开始,反向遍历整个操作图(计算图),计算每个节点的梯度。
  2. 链式法则:自动应用链式法则计算梯度。
  3. 累积梯度:对于那些有多个子节点的张量(在图中被多次引用),梯度会累积,而不是被替换。

3、示例:基于 PyTorch 的自动微分

让我们通过一个简单的例子来看看 PyTorch 如何实现自动微分:

import torch

# 创建一个张量,并设置requires_grad=True来追踪与它相关的计算
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
# x = torch.tensor([1.0, 2.0, 3.0])
# x.requires_grad=True
# 是一样的

# 定义张量上的操作
y = x * x  # y = x^2 ,逐元素乘法得 tensor[1.0,4.0,9.0]
z = y.mean()  # z = 1/3 * sum(x^2)

# 计算z关于x的梯度
z.backward()

# 打印梯度 dz/dx
print(x.grad)

逐元素乘法:张量的基础运算
在这个例子中,x 是一个具有三个元素的张量,我们对它应用平方操作得到 y,然后对 y 取均值得到 z。调用 z.backward() 后,x 的梯度将存储在 x.grad 中。

输出将是:

tensor([0.6667, 1.3333, 2.0000])

这个梯度实际上是函数 z = 1 3 ∑ x 2 z = \frac{1}{3} \sum x^2 z=31x2 x = [ 1.0 , 2.0 , 3.0 ] x = [1.0, 2.0, 3.0] x=[1.0,2.0,3.0] 处的导数。

梯度下降法 反向传播中,如果 x 是模型中的一个可训练的权重参数,并且我们已经计算出了损失函数关于 x 的梯度(x.grad),那么在权重更新阶段,x 会按照以下方式更新:
x ← x − 学习率 × x . grad x \leftarrow x - \text{学习率} \times x.\text{grad} xx学习率×x.grad
在梯度上升法中 区别是加号。

a.示例详解

示例包括以下步骤:

  1. 张量创建x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
  2. 应用操作y = x * x (即 y = x 2 y = x^2 y=x2)
  3. 计算均值z = y.mean() (即 z = 1 3 ∑ x 2 z = \frac{1}{3} \sum x^2 z=31x2)

当我们调用 z.backward() 时,计算图会反向传递梯度,使用链式法则计算关于每个节点的梯度。

b.梯度计算过程
  1. 初始化:梯度 dz/dz 初始化为 1。
  2. 从 z 到 y:应用链式法则,计算 dz/dy。由于 z = 1 3 ∑ y z = \frac{1}{3} \sum y z=31y,有 dz/dy = [1/3, 1/3, 1/3]
  3. 从 y 到 x:继续使用链式法则,计算 dy/dx。由于 y = x^2,有 dy/dx = 2x。所以在 x = [1.0, 2.0, 3.0] 处,我们得到 dy/dx = [2*1.0, 2*2.0, 2*3.0] = [2, 4, 6]
  4. 组合:结合这些,得到 dz/dx = dz/dy * dy/dx = [1/3, 1/3, 1/3] * [2, 4, 6] = [2/3, 4/3, 6/3] = [0.6667, 1.3333, 2.0000]
c.可视化计算图
import torchviz
import torch
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x * x
z = y.mean()
z.backward()

torchviz.make_dot(z, params={'x': x, 'y': y, 'z': z})

这将生成一个图形,清晰地表示了计算图中的各个节点以及它们之间的依赖关系。这对于理解复杂的神经网络结构非常有帮助。
安装 Graphviz

  • x (3): 这是一个有 3 个元素的一维张量 [1.0, 2.0, 3.0],作为计算图的输入。它的形状是 ( 3 ) (3) (3),代表有 3 个元素。

  • AccumulateGrad: 这表示梯度累积节点。由于 x 被创建为 requires_grad=True,所以 PyTorch 会追踪它的梯度。当 z.backward() 被调用时,PyTorch 会计算 z 相对于 x 的梯度,并将这些梯度累积(即累加)到 x.grad 属性中。

  • MulBackward0: 这是一个反向传播操作,表示 y = x * x 操作的梯度计算。MulBackward0 是 PyTorch 自动为乘法操作分配的反向传播函数。

  • MeanBackward0: 类似地,这是 z = y.mean() 的反向传播操作。MeanBackward0 计算 z 相对于 y 的梯度。

  • z (): 这是计算图的最终输出。zy 张量的平均值。由于 z 是一个标量(即它只有一个元素),所以它的形状为空(())。

箭头显示了数据和梯度的流向。当调用 z.backward() 时,PyTorch 会沿着这些箭头的方向逆向传播梯度,从 z 开始,通过 MeanBackward0MulBackward0,最后到达 x 并在 AccumulateGrad 节点处累积梯度。

4、总结

总的来说,一般输出通过最终的损失函数来反向计算梯度。梯度实际上就是进行链式法则求偏导得到对应点的值,这个梯度可以根据学习率大小用来更新权重。

以上的实际上,我们可以把z看作 损失函数(不管意义是啥),x看作可训练的权重参数,然后反向传播zx求梯度,最后得到了每个x值的梯度值(求法在之前有介绍,就是一个链式法则求某个点的导数而已),然后更新x,可以简略认为是一个神经网络的反向传播过程。
损失函数: z = 1 3 ∑ x 2 损失函数:z = \frac{1}{3} \sum x^2 损失函数:z=31x2
反向传播更新: x ← x − 学习率 × x . grad 反向传播更新:x \leftarrow x - \text{学习率} \times x.\text{grad} 反向传播更新:xx学习率×x.grad

二、为什么要计算损失,为何权重更新是对的?

我们从梯度下降来理解~

1、梯度下降数学原理

在这里插入图片描述

  我们说对一个权重求梯度,实际上就是目标函数z对该权重求偏导,而链式法则也不过是一个求导方法,最后不过也相当于把其他变量看成常数,对需要求导的变量进行求导。对x求偏导可以把其他变量(其他权重)看作一个常数。换句话说,我们先理解成,z关于x的单变量函数,因此我们对x求梯度之后(即导数之后),根据导数的下降方向改变原来的x,实际上这个变化后x值就可以使得z值更小。因此我们所谓的梯度下降,实际上就是通过对x求偏导沿z下降的方向更新x, 使得z(损失函数)更小的方法。

  • 沿梯度方向下降更新权重,实际上就是可以看成z=z(x),让z最小,对x求导,让x沿梯度下降的方向变化,达到z变小的目的。

  而我们的学习率(通常表示为 α \alpha α η \eta η 在梯度下降算法中扮演着关键的角色,因为它决定了每一步更新参数时的步长:

  1. 学习率过大

    • 如果学习率设置得太大,那么每次更新时步长过长,可能会导致参数 (x) 跳过最小值点,甚至可能导致每次迭代后离最小值点越来越远,从而使算法发散,无法收敛到最小值。
  2. 学习率过小

    • 反之,如果学习率太小,虽然可以保证更稳定地逼近最小值,但更新的速度会非常慢。这不仅意味着需要更多的迭代次数才能达到最小值,而且还可能在到达全局最小值前就因为其他条件(如迭代次数限制或计算时间限制)而停止,导致算法效率低下。
  3. 梯度为零的情况

    • 理想情况下,当达到函数的最小值点时,该点的梯度为零。在这种情况下,由于没有梯度(即没有变化的方向或大小),参数不再更新,算法停止。这是梯度下降算法收敛的标志。

合适的学习率选择对于梯度下降法的成功至关重要。在实践中,选择合适的学习率可能需要基于经验、实验调整或者使用一些适应性学习率调整策略,如 Adam 或 AdaGrad,这些方法可以自动调整学习率,以改进梯度下降的性能和稳定性。

2、梯度上升

刚刚提到的梯度下降让损失函数达到最小值,那么梯度上升就是反过来了,它让目标函数达到最大值。

三、在模型中使用自动微分

import torch


class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()

    def forward(self, x, w, b):
        return 1 / (torch.exp(-(w * x + b)) + 1)


model = MyModel()

# 设置输入参数
x = torch.tensor(1.0, requires_grad=True)
w = torch.tensor(0.0, requires_grad=True)
b = torch.tensor(0.0, requires_grad=True)

# Forward pass
output = model(x, w, b)

# Backward pass
output.backward()

# Access the gradients
print(x.grad)  # Gradient with respect to x
print(w.grad)  # Gradient with respect to w
print(b.grad)  # Gradient with respect to b

使用 PyTorch 中的 backward() 方法可以自动计算所有注册了梯度(即设置了 requires_grad=True)的张量的导数。在示例中,x, w, 和 b 都被设置为 requires_grad=True,这意味着 PyTorch 会追踪这些变量的所有操作,用来构建一个计算图。当调用 output.backward() 时,PyTorch 将自动计算 output 对于所有涉及的变量的梯度。

模型执行的是逻辑回归的前向传播公式:

output = 1 exp ⁡ ( − ( w ⋅ x + b ) ) + 1 \text{output} = \frac{1}{\exp(-(w \cdot x + b)) + 1} output=exp((wx+b))+11

这是一个经典的 sigmoid 激活函数应用。以下是 backward() 过程的详细说明:

  1. 前向传播(Forward Pass)
    在前向传播中,使用给定的输入 x, w, 和 b,按照您定义的 forward 方法计算输出。

  2. 反向传播(Backward Pass)
    output.backward() 被调用时,PyTorch 从 output 开始,自动计算它对 x, w, 和 b 的梯度。这是通过反向遍历从输出到每个输入的计算图,应用链式法则完成的。

  3. 访问梯度
    在反向传播之后,每个变量的 .grad 属性会包含其对应的梯度。这些梯度表示了损失函数相对于每个变量在当前值的斜率或变化率。

  • x.grad 会包含 outputx 的梯度。
  • w.grad 会包含 outputw 的梯度。
  • b.grad 会包含 outputb 的梯度。

这些梯度可以用于优化步骤,比如在一个训练循环中用梯度下降法更新 wb。这是实现参数更新和模型训练的关键步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/567057.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt 菜单栏上手教程:QMenuBar QMenu QToolbar

引言 在Qt框架中,QMenuBar、QMenu、QToolbar和QAction都是用于构建应用程序界面中的用户交互元素。 QMenuBar 是什么:QMenuBar是一个用于创建横向菜单栏的类。在桌面应用程序中,它通常位于窗口的顶部。应用场景:当您需要一个包含…

CTF小工具

1 ciphey https://github.com/Ciphey/Ciphey Ciphey 是一个使用自然语言处理和人工智能的全自动解密/解码/破解工具。 简单地来讲,你只需要输入加密文本,它就能给你返回解密文本。就是这么牛逼。 有了Ciphey,你根本不需要知道你的密文是哪…

ros2_control【B站WMGIII教学学习记录】1

资源 https://www.bilibili.com/video/BV1ku411G7UR? 学习过程中存在bug,记录一下 1 Q:"package ‘joint_state_publisher_gui’ not found, searching: [/home A: sudo apt install ros-humble-joint-state-publisher2 https://fishros.org.cn/forum/to…

如何高效的压缩GIF图片?一键搞定GIF动图压缩 就是这么简单

一,引言 压缩GIF动图是一个常见的需求,无论是在社交媒体上分享动态表情,还是在网页设计中添加动态元素,GIF动图都扮演着重要的角色。然而,过大的GIF文件大小可能会导致加载速度慢,影响用户体验。因此&…

Github首页美化(updating)

Github首页美化 https://github.com/QInzhengk一、新建仓库二、美化Github首页主页访问量统计仓库状态统计常用语言占比统计社交链接 界面展示 https://github.com/QInzhengk 一、新建仓库 对Github首页进行美化,需要新建一个仓库名和自己 Github 用户名相同的仓库…

YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images

摘要 由于以下因素,从航拍图像中检测物体面临着重大挑战:1)航拍图像通常具有非常大的尺寸,通常有数百万甚至数亿像素,而计算资源有限。2)物体尺寸较小导致有效信息不足,无法进行有效检测。3)物体分布不均匀导致计算资源浪费。为了解决这些问题,我们提出YOLC(You Onl…

Python ADTK库:时间序列异常检测的利器

更多Python学习内容:ipengtao.com ADTK(Anomaly Detection Toolkit)是一个用于时间序列异常检测的Python库,提供了多种算法和工具,帮助用户识别和分析时间序列数据中的异常点和趋势变化。本文将详细介绍ADTK库的功能、…

2024年学浪视频怎么缓存

2024年已经到来,越来越多的人开始购买学浪视频,然而一些课程的时间限制使得许多人希望能够永久保存这些宝贵的学习资源。幸运的是,本文将向大家介绍一个解决方案——使用小浪助手工具来下载学浪视频,以便随时随地享受学习的乐趣。…

C++实战演练---负载均衡在线oj项目预热

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂,年薪百万! 前言 学习准备了快一年时间,心心念念的实战演练终于可以开始了,话不多说,直接进入主题…

从构成看自来水厂自动化控制系统的创新与发展

自来水厂自动化控制系统涵盖了多个关键组成部分,包括水管理云平台、供水监控系统以及供水调度平台。 系统内嵌了一系列自主创新的核心算法,这些算法结合了数学建模、机器仿真和流体力学等多元数据模型,以优化设备间的关联和控制关系&#xf…

Midjourney-01 初试上手 注册使用并生成你的第一张AI图片 详细流程 提示词 过程截图 生成结果 付费文生图的天花板!

背景介绍 Midjourney是一款基于人工智能技术的绘画软件,利用深度学习算法来辅助用户进行绘画创作。这款软件能够通过用户输入的文本描述生成图像,支持多种生成方式,包括文字生成图片、图片生成图片和混合图片生成图片。 图像生成方式&#…

华为外派伊拉克,一天补助6000元

大家好,我是YUAN哥! 最近有朋友询问关于华为外派伊拉克的补助情况,听说一天能拿到6000元,这听起来相当诱人,但真实性有待考证。 据我所知,华为对艰苦地区的外派员工确实有补助,但最高一天是100美…

Proxmox VE 实现企业微信通知

前言 主要实现获取系统信息发送给企业微信机器人。 企业微信机器人自动化获取PVE系统信息脚本编写 生成FIGlet和AOL宏字体 参考最终实现获取系统信息,获取到的信息发送给企业微信机器人进行输出企业微信机器人创建参考 更改以下脚本企业微信机器人地址企业微信机…

数控6面钻的优缺点

在木工、家具制造和建筑行业中,数控6面钻已成为一种革命性的工具。这种先进的机器以其高效、精准和多功能性受到了广大制造商的青睐。然而,就像任何技术产品一样,数控6面钻也有其优缺点。在本文中,我们将深入探讨数控6面钻的优缺点…

如何在React中构建动态下拉组件 - 解释React复合组件模式

下拉菜单长期以来一直是网站和应用程序中的重要组成部分。它们是用户交互的默默英雄,通过简单的点击或轻触默默地促进着无数的操作和决策。 今天你可能已经遇到了其中之一,无论是在你最喜爱的在线商店上选择类别,还是在注册表单上选择你的出…

106短信群发平台如此火热究竟有没有效?

106短信群发平台之所以如此火热,确实是因为它在多个方面展现出了显著的有效性。 首先,从发送速度和到达率来看,106短信平台表现优秀。无论是节假日还是平日,其发送速度都能保持在一个较快的水平,这对于验证码短信、通…

Mybatis源码学习系列之搭建源码阅读环境

1. 实验环境 jdk1.8.0_171apache-maven-3.5.4IntelliJ IDEA 2018mybatis-parent 31mybatis-3.5.4 2. 下载源码 先在官方GitHub下载对应的代码 git clone https://github.com/mybatis/parent git clone https://github.com/mybatis/mybatis-3mybatis3使用3.5.4版本&#xff…

【数据库教程】Navicat和在线phpMyAdmin如何连接远程服务器

文章目录 NavicatphpMyAdmin来源 有很多工具可以连接数据库,这里介绍两种,自行选择一种使用即可 Navicat 1、打开Navicat 2、点击连接,选择MySQL 3、输入数据库信息后点击测试连接(数据库信息请联系我) 4、点击确…

Java进阶-Stream流

概述 在Java8中,得益于lambda所带来的函数式编程,引入了一个全新的Stream流的概念目的:用于简化集合和数组操作的api 案例 需求:创建一个集合存储多个字符串元素,将集合中所有以“z”开头的元素存储到新的集合中&am…

C++ | Leetcode C++题解之第44题通配符匹配

题目&#xff1a; 题解&#xff1a; class Solution { public:bool isMatch(string s, string p) {auto allStars [](const string& str, int left, int right) {for (int i left; i < right; i) {if (str[i] ! *) {return false;}}return true;};auto charMatch []…