- 与【java 内存结构】不同,【java 内存模型】是Java Memory Model(JMM)的意思。
- 前三章主要介绍java内存结构(组成)、垃圾回收、字节码技术、类加载器,与内存模型这一章关联更多的是多线程,与前面的关联不大。
- 简单的说,JMM 定义了一套在多线程读写共享数据时(成员变量、数组)时,对数据的可见性、有序性、和原子性的规则和保障(权威解释可参考官网)。
1、原子性
1.1 问题分析
举例:两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操
作。
public class Demo3_1 {
static int a = 10;
public static void main(String[] args) {
addTest();
}
public static void addTest(){
a++;
}
}
对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 加法
putstatic i // 将修改后的值存入静态变量i
对于 i-- 也是类似:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 减法
putstatic i // 将修改后的值存入静态变量i
而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和线程内存中进行数据交换:
如果是单线程以下 8 行代码是顺序执行(不会交错)没有问题:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
getstatic i // 线程1-获取静态变量i的值 线程内i=1
iconst_1 // 线程1-准备常量1
isub // 线程1-自减 线程内i=0
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=0
但多线程下这 8 行代码可能交错运行
出现负数的情况:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
出现正数的情况:
// 假设i的初始值为0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
1.2 解决方法
synchronized (同步关键字),语法:
synchronized( 对象 ) {
要作为原子操作代码
}
用 synchronized 解决并发问题:
static int i = 0;
static Object obj = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
synchronized (obj) {
i++;
}
}
});
Thread t2 = new Thread(() -> {
for (int j = 0; j < 5000; j++) {
synchronized (obj) {
i--;
}
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(i);
}
优化:将synchronized提取到for循环外面,减少了加锁/解锁的次数:
Thread t1 = new Thread(() -> {
synchronized (obj) {
for (int j = 0; j < 5000; j++) {
i++;
}
}
});
注意:上例中 t1 和 t2 线程必须用 synchronized 锁住同一个 obj 对象,否则没法起到同步的效果。
2、可见性
2.1 退不出的循环
现象如下,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:
static boolean run = true;
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(()->{
while(run){
// ....
}
});
t.start();
Thread.sleep(1000);
run = false; // 线程t不会如预想的停下来
}
分析原因:
- 初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。
- 因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中,减少对主存中 run 的访问,提高效率。
- 一秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量的值,结果永远是旧值。
2.2 解决办法
volatile(易变关键字)
它可以用来修饰成员变量和静态成员变量,它可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。
可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见,volatile 不能保证原子性,仅用在一个写线程,多个读线程的情况。
- synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是synchronized是属于重量级操作,性能相对更低。
- 如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到对 run 变量的修改了,想一想为什么?(因为被synchronized同步代码块了)
3、有序性
3.1 诡异的结果
int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
// 线程2 执行此方法
public void actor2(I_Result r) {
num = 2;
ready = true;
}
I_Result 是一个对象,有一个属性 r1 用来保存结果,问:可能的结果有几种?
- 情况1:线程1 先执行,这时 ready = false,所以进入 else 分支结果为 1;
- 情况2:线程2 先执行 num = 2,但没来得及执行 ready = true,线程1 执行,还是进入 else 分支,结果为1;
- 情况3:线程2 执行到 ready = true,线程1 执行,这回进入 if 分支,结果为 4(因为 num 已经执行过了);
但还有可能是0,这种情况下是:线程2 执行ready=true,切换到线程1,进入if分支,相加为0,再切回线程2执行num=2;这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现:借助java并发压测工具jcstress。
3.2 解决办法
volatile 修饰的变量,可以禁用指令重排。
volatile boolean ready = false;
3.3 有序性理解
static int i;
static int j;
// 在某个线程内执行如下赋值操作
i = ...; // 较为耗时的操作
j = ...;
可以看到,上面的代码不管先执行 i 还是先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行时,既可以是先i后j,也可以先j后i。JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,这种特性称之为『指令重排』。多线程下『指令重排』会影响正确性,例如著名的double-checked locking模式实现单例:(使用时须加volatile)
public final class Singleton {
private Singleton() { }
private static Singleton INSTANCE = null;
public static Singleton getInstance() {
// 实例没创建,才会进入内部的 synchronized代码块
if (INSTANCE == null) {
synchronized (Singleton.class) {
// 也许有其它线程已经创建实例,所以再判断一次
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
以上的实现特点是:
- 懒惰实例化
- 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
但在多线程环境下,上面的代码是有问题的, INSTANCE = new Singleton() 对应的字节码为:
0: new #2 // class cn/itcast/jvm/t4/Singleton
3: dup
4: invokespecial #3 // Method "<init>":()V
7: putstatic #4 // Field
INSTANCE:Lcn/itcast/jvm/t4/Singleton;
其中 4 7 两步的顺序不是固定的,也许 jvm 会优化为:先将引用地址赋值给 INSTANCE 变量后,再执行构造方法,如果两个线程 t1,t2 按如下时间序列执行:
- 时间1 t1 线程执行到 INSTANCE = new Singleton();
- 时间2 t1 线程分配空间,为Singleton对象生成了引用地址(0 处)
- 时间3 t1 线程将引用地址赋值给 INSTANCE,这时 INSTANCE != null(7 处)
- 时间4 t2 线程进入getInstance() 方法,发现 INSTANCE != null(synchronized块外),直接返回 INSTANCE
- 时间5 t1 线程执行Singleton的构造方法(4 处)
这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初始化完毕的单例。
对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效。
3.4