助力突发异常事件预警保障公共安全,基于YOLOv7【tiny/l/x】模型开发构建公共生活场景下危险人员持刀行凶异常突发事件检测预警识别系统

基于AI目标检测模型的暴力持刀行凶预警系统是当下保障人民生命安全的新途径,近年来,公众场合下的暴力袭击事件频发,不仅给受害者及其家庭带来了深重的伤害,也对社会的稳定和安全造成了极大的威胁。在这种背景下,如何有效预防和减少这类事件的发生,成为了摆在我们面前的重要课题。随着人工智能技术的不断发展,基于AI目标检测模型的科技手段为解决这一问题提供了新的思路。AI目标检测模型是一种能够自动识别和定位图像或视频中特定目标的技术。通过训练大量的数据样本,模型可以学会识别各种物体和场景,包括人的姿态、动作以及所持物品等。在暴力持刀行凶预警系统中,我们可以利用这种技术来实时监测公共场所的监控视频,一旦发现有人持有刀具或其他危险物品,并表现出异常行为,系统便能立即发出预警,提醒相关人员及时采取措施。相比于传统的纯人工盯防的低效方式不仅成本高而且容易出现纰漏,基于人工智能的检测手段能够全天候无休止的自动化检测计算,如果能够有充足的高质量的数据进行训练学习能够达到十分出色的性能,基于AI目标检测模型的暴力持刀行凶预警系统是一种具有广阔应用前景的科技手段,对于保障人民的生命安全和社会的稳定发展有着积极重要的意义,本文正是建立在这样的问题背景上进行深度思考,从实验性质的开发实践出发,来实际探索基于目标检测模型进行危险异常事件检测预警的可行性。

在前文中我们已经基于经典的YOLOv5模型开发构建了对应的实践应用案例,感兴趣的话可以自行移步阅读即可:

《助力突发异常事件预警保障公共安全,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建公共生活场景下危险人员持刀行凶异常突发事件检测预警识别系统》

本文则是想要基于YOLOv7模型来进行开发实践,首先看下实例效果:

接下来简单看下实例数据集:

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test


# number of classes
nc: 3


# class names
names: ['hand','knife','person']

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,最终线上选取的是yolov7模型作为推理模型,这里给出来yolov7的模型文件:

# parameters
nc: 3  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],

   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]
如果对YOLOv7开发构建自己的个性化目标检测系统有疑问的可以参考前文的超详细教程:
《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss走势】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合实验对比分析结果来看:tiny系列的模型效果最差,而yolov7和yolov7x达到了相近的效果,这里考虑参数量的话最终选择使用yolov7模型来作为最终的推理模型。

接下来我们详细看下yolov7模型的结果详情。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

本文仅作为初步的尝试实践,抛砖引玉,希望未来会有真正落地应用的系统出现造福社会!

感兴趣的话也可以对照尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/565677.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

思维树(Tree of Thoughts)的概念

思维树(Tree of Thoughts,简称ToT)是一种利用大型语言模型进行问题解决的框架。这个框架借鉴了人类认知研究的成果,特别是关于人类在做决策时的两种思维方式:快速、自动、无意识的模式(称为“系统1”&#…

Mysql 在Windows Server系统下修改数据文件存储路径遇到的坑

因项目需要搭建一个Mysql数据库,为了方便日常运维操作开始选择了Windows Server 2012R2(已有的虚拟机),考滤到要300G空间,原来的盘空间不够了,就是给虚拟机加了磁盘,Mysql 8.0.26社区版安装路径没得选择,默认就装在C&a…

微服务两种方式登录

目录 1.restTemplate方式 1.1页面 1.2消费者 1.3生产者 1.4效果 2.Feign方式 2.1Service 2.2生产者 三个生产者 一个消费者,三个生产者需要用mysqlmybatis 三个不同的数据库。 页面输入用户名和密码,提交到后端消费者,消费者传到生产…

深入C语言,发现多样的数据之枚举和联合体

一、枚举 枚举 是列出某些有穷序列集的所有成员的程序,或者是一种特定类型对象的计数。这两种类型经常(但不总是)重叠。是一个被命名的整型常数的集合。简单来说就将某种特定类型的对象一一进行列举,一一列举特定类型可能的取值。…

通过创新的MoE架构插件缓解大型语言模型的世界知识遗忘问题

在人工智能领域,大型语言模型(LLM)的微调是提升模型在特定任务上性能的关键步骤。然而,一个挑战在于,当引入大量微调数据时,模型可能会遗忘其在预训练阶段学到的世界知识,这被称为“世界知识遗忘…

解决在服务器中减少删除大文件夹耗时太久的问题

在数据驱动的现代商业环境中,企业对服务器的高效运作有着极高的依赖性。然而,IT管理员们常常面临一个棘手的问题:删除服务器上的大型文件夹过程缓慢,这不仅降低了工作效率,还可能对用户体验造成负面影响。本文将介绍一…

rCore-Turorial-Book第三课(计算机启动流程和程序内存布局与编译流程探索)

本节任务:梳理程序在操作系统中被编译运行的全流程,大体了解我们在没有操作系统的情况下,我们会面对那些困难 重点 1. 计算机组成基础 面对的困难:没有操作系统,我们必须直面硬件资源,管理起他们并为应用程…

Syncovery for Mac v10.14.3激活版:文件备份和同步工具

Syncovery for Mac是一款高效且灵活的文件备份与同步工具,专为Mac用户设计,旨在确保数据的安全性和完整性。该软件支持多种备份和同步方式,包括本地备份、网络备份以及云备份,用户可以根据实际需求选择最合适的方案。 Syncovery f…

全科都收!1区毕业水刊,影响因子狂涨至9.8,无预警记录!国人评价高!

本期,小编给大家解析的是一本创刊于2014年,且于同年被WOS数据库收录的毕业“水刊”——SCIENTIFIC DATA。 截图来源:期刊官网 SCIENTIFIC DATA(ISSN:2052-4463)是一本致力于数据的开放获取期刊&#xff0c…

linux将一个文件移动或复制到另一个目录下(超详细)

问题:需要在linux中将一个文件移动或复制到另一个目录下 下面提到的目录,可以直观理解为window中的文件夹 1、mv命令 mv是"move"的缩写,用于移动文件或目录到另一个位置。 将 文件 a.txt 移动到 目录home下 mv a.txt home将 目录…

基于SpringBoot的宠物领养网站管理系统

基于SpringBootVue的宠物领养网站管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringBootMyBatis工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 宠物领养 宠物救助站 宠物论坛 登录界面 管理员界面 摘要 基于Spr…

二叉搜索树中的搜索(力扣700)

解题思路:因为二叉搜索树的左小右大特点,中只是寻找比较目标,怎么序遍历都可以,终止条件就是遍历完毕和找到了,然后就遍历左右子树开始寻找就好了 具体代码如下: class Solution { public: TreeNode* searchBST(Tre…

基于springboot+vue+Mysql的房产销售平台

开发语言:Java框架:springcloudJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#xff1a…

Pycharm破解流程

1.下载pycharm 网上很多,随便找一个,懒得找的话,或者去我传上去的资源pycharm部分直接取 2.下载文件 文件部分,我放在pycharm文件里面一起 打开下载好的激活包 3.执行脚本 先执行unisntall-all-users.vbs,直接双击打开&#xff0c…

Rumble Club上线时间+配置要求+游戏价格+加速器推荐

Rumble Club上线时间配置要求游戏价格加速器推荐 Rumble Club是一款基于物理的玩家大乱斗游戏,该作拥有丰富饱满的视觉效果和趣味性十足的游玩极致,让玩家可以各种富有想象力的方式,推搡、戏耍好友。该作即将正式上线,为了避免玩…

DDP、pytorch的分布式 torch.distributed.launch 训练说明

0、DDP的运行原理 执行步骤: 将data分为多个不同的batch,每个gpu得到batch都是不一样的然后将每个batch放在每个gpu上独立的执行最后得到的梯度求平均将平均梯度平分给每个gpu执行下一次迭代 这也就意味着你有多少个gpu,训练的速度也会提升…

Centos7虚拟机与真机乎ping以及虚拟机ping不通的原因

以下是本机的网络地址 首先我在这两天的学习中遇到了以下种种问题: 本机与虚拟机互相ping不通虚拟机无法连接网络访问互联网本机可以ping通虚拟机 但是虚拟机不能ping本机 解决方法: 我在这里把dhcp改成了静态ip地址 这样以后不管怎么变化IP地址都没…

# 从浅入深 学习 SpringCloud 微服务架构(四)Ribbon

从浅入深 学习 SpringCloud 微服务架构(四)Ribbon 段子手168 一、ribbon 概述以及基于 ribbon 的远程调用。 1、ribbon 概述: Ribbon 是 Netflixfa 发布的一个负载均衡器,有助于控制 HTTP 和 TCP客户端行为。 在 SpringCloud 中 Eureka …

汽车摄像头匿名化处理解决方案,保护信息的安全性和隐私性

随着智能交通和自动驾驶技术的迅猛发展,汽车摄像头已成为现代汽车不可或缺的一部分,摄像头所捕捉的图像信息也引发了日益严峻的信息安全问题。如何在充分利用摄像头功能的同时,保障个人隐私和信息安全,已成为企业亟待解决的问题。…

芒果超媒的“乘风破浪”,差了一点市场海浪的反馈

4月21日晚间,芒果超媒发布了2023年度&2024一季度报告。 芒果超媒2023年实现营业收入146.28亿元,同比增长4.66%;净利润35.56亿元,同比增长90.73%;基本每股收益1.90元。公司拟每10股派发现金红利1.8元。2024年第一季…