Scikit-Learn支持向量机分类

Scikit-Learn 支持向量机分类

    • 1、支持向量机(SVM)
      • 1.1、SVM概述
      • 1.2、SVM原理
      • 1.3、SVM的损失函数
      • 1.4、支持向量机分类的优缺点
    • 2、Scikit-Learn支持向量机分类
      • 2.1、Scikit-Learn支持向量机分类API
      • 2.2、支持向量机分类初体验(手写数字识别)
      • 2.3、支持向量机分类案例




1、支持向量机(SVM)

1.1、SVM概述


在机器学习中,支持向量机(Support Vector Machine,SVM)算法既可以用于回归问题(SVR),也可以用于分类问题(SVC)

支持向量机是一种经典的监督学习算法,通常用于分类问题。SVM在机器学习知识结构中的位置如下:

SVM的核心思想是将分类问题转化为寻找分类平面的问题,并通过最大化分类边界点(支持向量)到分类平面的距离(间隔)来实现分类

在这里插入图片描述

如图所示,左图展示了三种可能的线性分类器的决策边界,虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类;其余两个模型在训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新样本时,表现可能不会太好

右图中的实线代表SVM分类器的决策边界,两虚线表示最大间隔超平面,虚线之间的距离(两个异类支持向量到超平面的距离之和)称为超平面最大间隔,简称间隔;SVM的决策边界不仅分离了两个类别,而且尽可能的远离了最近的训练实例,距离决策边界最近的实例称为支持向量

1.2、SVM原理


SVM的最优化问题就是要找到各类样本点到超平面的距离最远,也就是找到最大间隔超平面。任意超平面的方程为
ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0

其中 ω \omega ω为超平面的法向量,决定了超平面的方向; b b b为位移项,决定了超平面到原点间的距离

二维空间点 ( x , y ) (x,y) (x,y)到直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0的距离公式为
d = ∣ A x + B y + C ∣ A 2 + B 2 d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}} d=A2+B2 Ax+By+C

扩展到N维空间中,点 ( x 1 , x 2 , . . . x n ) (x_1,x_2,...x_n) (x1,x2,...xn)到直线 ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0的距离为
d = ∣ ω T x + b ∣ ∣ ∣ ω ∣ ∣ d=\frac{|\omega^Tx+b|}{||\omega||} d=∣∣ω∣∣ωTx+b

其中, ∣ ∣ ω ∣ ∣ ||\omega|| ∣∣ω∣∣= ω 1 2 + ω 2 2 + . . . + ω n 2 \sqrt{\omega_1^2+\omega_2^2+...+\omega_n^2} ω12+ω22+...+ωn2

在这里插入图片描述
SVM假设样本是线性可分的,则任意样本点到超平面的距离可写为
d = ∣ ω T x + b ∣ ∣ ∣ ω ∣ ∣ d=\frac{|\omega^Tx+b|}{||\omega||} d=∣∣ω∣∣ωTx+b
为方便描述和计算,设 y i ∈ − 1 , 1 y_i\in{-1,1} yi1,1,其中1表示正例,-1表示负例,则有
{ ω T x i + b ≥ + 1    y i = + 1 ω T x i + b ≤ − 1    y i = − 1 \begin{cases} \omega^Tx_i + b ≥ +1 \, \, & y_i=+1 \\ \omega^T x_i+b ≤ -1 \, \, & y_i=-1 \end{cases} {ωTxi+b+1ωTxi+b1yi=+1yi=1

此时,两个异类支持向量到超平面的距离之和为
γ i = y i ( ω T ∣ ∣ ω ∣ ∣ ⋅ x i + b ∣ ∣ ω ∣ ∣ ) = 2 ∣ ∣ ω ∣ ∣ \gamma_i=y_i\left(\frac{\omega^T}{||\omega||}\cdot x_i + \frac{b}{||\omega||} \right) = \frac{2}{||\omega||} γi=yi(∣∣ω∣∣ωTxi+∣∣ω∣∣b)=∣∣ω∣∣2

其中, γ \gamma γ称为间隔。最大间隔不仅与 ω \omega ω有关,偏置 b b b也会隐性影响超平面的位置,进而对间隔产生影响

现在,我们只需要使间隔 γ \gamma γ最大,即
arg ⁡ max ⁡ ω , b 2 ∣ ∣ ω ∣ ∣ \arg \mathop{\max}\limits_{\omega,b} \frac{2}{||\omega||} argω,bmax∣∣ω∣∣2

最大化间隔 γ \gamma γ,显然只需要最小化 ∣ ∣ ω ∣ ∣ ||\omega|| ∣∣ω∣∣,于是,上式可重写为
arg ⁡ min ⁡ ω , b 1 2 ∣ ∣ ω ∣ ∣ 2 \arg \mathop{\min}\limits_{\omega,b} \frac{1}{2}||\omega||^2 argω,bmin21∣∣ω2

这里的平方和之前一样,一是为了方便计算,二是可以将目标函数转化为凸函数的凸优化问题。称该式为SVM的基本型

1.3、SVM的损失函数


1.3.1、软间隔与硬间隔

如果我们严格让所有实例都不在最大间隔之间,并且位于正确的一边,这就是硬间隔分类。但是硬间隔分类有两个问题:首先,它只在数据是线性可分时才有效;其次,它对异常值较敏感

要避免这些问题,可以使用更灵活的模型。目标是尽可能在保持最大间隔的同时允许间隔违例(在最大间隔之间,甚至位于错误的一边),在最大间隔与违例之间找到良好的平衡,这就是软间隔分类

在这里插入图片描述
软间隔的目标函数为
J = 1 2 ∣ ∣ ω ∣ ∣ 2 + C ∑ i = 1 n ε i J=\frac{1}{2}||\omega||^2 + C\sum_{i=1}^{n}\varepsilon_i J=21∣∣ω2+Ci=1nεi
其中,超参数 C C C为惩罚系数, ε \varepsilon ε为松弛因子。 C C C越小,惩罚越小(间隔越宽,违例越多)

1.3.2、核函数

对于非线性数据集,线性支持向量机无法处理。我们希望将非线性问题转化为线性可分问题来求解。这时,需要引入一个新的概念:核函数

核函数可以将样本从原始空间映射到一个高维空间,使得样本在新的空间中线性可分

详细介绍可参考这篇文章:https://blog.csdn.net/mengjizhiyou/article/details/103437423

核函数将原始空间中的向量作为输入向量,并返回转换后的特征空间中向量的内积。通过核方法可以学习非线性支持向量机,等价于在高维特征空间中学习线性支持向量机

所以在非线性SVM中,核函数的选择就是影响SVM最大的变量。常用核函数有:线性核、多项式核、高斯核、拉普拉斯核和Sigmoid核等

在这里插入图片描述

1.4、支持向量机分类的优缺点


优点:

  • 可适用于处理高维空间数据,对于数据维度远高于样本数据量的情况也有效
  • 在决策函数中使用少部分训练数据(支持向量)进行决策,内存占用小,效率高
  • 通过支持向量选取最优决策边界,对噪声和异常值的敏感度较低,稳定性较好
  • 更加通用,可处理非线性分类任务,提供了多种通用核函数,也支持自定义核函数

缺点:

  • 解释性差:不像K-Means、决策树那样直观,不易于理解,可解释性差
  • 对参数和核函数敏感:性能高度依赖于惩罚参数C和核函数的选择。如果参数选择不当,容易导致过拟合或欠拟合
  • 非线性分类训练时间长:核函数涉及到二次规划问题,需要使用复杂的优化算法,当支持向量的数量较大时,计算复杂度较高

2、Scikit-Learn支持向量机分类

2.1、Scikit-Learn支持向量机分类API


Scikit-Learn支持向量机分类的API如下:

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)

官方对该API的描述为:

SVC的实现基于libsvm。SVC的拟合时间与样本数量成二次方关系,适用于样本数量较小的情况。如果样本数量过大(超过1W),建议使用其他模型,例如LinearSVCSGDClassifier。多类支持是根据One Vs One方案处理的

官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

中文官方文档:https://scikit-learn.org.cn/view/781.html

关于API参数、属性和方法详见官方文档

2.2、支持向量机分类初体验(手写数字识别)


下面使用Scikit-Learn内置的手写数字数据集演示了支持向量机分类算法在图像识别上的应用

手写数字数据集由1797个8x8像素的数字图像组成。数据集的每个图像存储为8x8灰度值的二维数组;数据集的属性存储每个图像代表的数字,这包含在图像的标题中

数据集的前4张图像可视化如下:

import matplotlib.pyplot as plt
from sklearn import datasets

# 加载手写数字数据集
data = datasets.load_digits()

_, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3))
for ax, image, label in zip(axes, data.images, data.target):
    ax.set_axis_off()
    image = image.reshape(8, 8)
    ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
    ax.set_title(f"Label: {label}")

plt.show()

# 手写数字图像存储为一个8x8的二维数组
print(data.images[0])
'''
[[ 0.  0.  5. 13.  9.  1.  0.  0.]
 [ 0.  0. 13. 15. 10. 15.  5.  0.]
 [ 0.  3. 15.  2.  0. 11.  8.  0.]
 [ 0.  4. 12.  0.  0.  8.  8.  0.]
 [ 0.  5.  8.  0.  0.  9.  8.  0.]
 [ 0.  4. 11.  0.  1. 12.  7.  0.]
 [ 0.  2. 14.  5. 10. 12.  0.  0.]
 [ 0.  0.  6. 13. 10.  0.  0.  0.]]
'''

在这里插入图片描述
为了对这些数据应用分类器,我们需要将图像展平,将每个图像的灰度值从8x8的二维数组转换为64x1的一维数组

然后,我们将数据划分成训练和测试子集,并在训练样本上拟合支持向量分类器。随后再使用拟合的分类器来预测测试集中样本的数字值

from sklearn.model_selection import train_test_split

n_samples = len(data.images)
X = data.images.reshape((n_samples, -1))
y = data.target

# 划分训练集(80%)和测试集(20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

from sklearn.svm import SVC

# SVM分类器
clf = SVC()

# 训练模型
clf.fit(X_train, y_train)

# 在测试集上预测
y_pred = clf.predict(X_test)

# 平均准确度评分
print(clf.score(X_test, y_test))  # 0.9916666666666667

由模型评分结果可知,数字图像的识别准确率在测试集中表现的很好

2.3、支持向量机分类案例


预留,未完待续…



参考文章:
https://blog.csdn.net/qs17809259715/article/details/97761963
https://blog.csdn.net/Claire_chen_jia/article/details/110916001
https://blog.csdn.net/qq_53123067/article/details/136060974
https://zhuanlan.zhihu.com/p/77750026
https://www.zhihu.com/tardis/zm/art/31886934?source_id=1005


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/564829.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【工具-PyCharm】

工具-PyCharm ■ PyCharm-简介■ PyCharm-安装■ PyCharm-使用■ 修改主题■ 设置字体■ 代码模板■ 解释器配置■ 文件默认编码■ 快捷键■ 折叠■ 移动■ 注释■ 编辑■ 删除■ 查看■ 缩进■ 替换 ■ PyCharm-简介 官方下载地址 Professional:专业版&#xff0…

头脑风暴法的四个原则,设计师必看!

俗话说 “三个臭皮匠超越诸葛亮”,这在工作场景中也是如此。最常见的工作场景是会议。会议的目的很多,如工作报告、产品宣传等。头脑风暴是一种工作会议。其目的是集思广益,充分发挥团队的智慧。有效的头脑风暴不仅考验组织者的会议控制能力&…

【前端Vue】Vue3+Pinia小兔鲜电商项目第6篇:整体认识和路由配置,本资源由 收集整理【附代码文档】

Vue3ElementPlusPinia开发小兔鲜电商项目完整教程(附代码资料)主要内容讲述:认识Vue3,使用create-vue搭建Vue3项目1. Vue3组合式API体验,2. Vue3更多的优势,1. 认识create-vue,2. 使用create-vue创建项目,1. setup选项的写法和执行…

【机器学习-17】数据变换---小波变换特征提取及应用案列介绍

引言 在机器学习领域,数据变换是一种常见且重要的预处理步骤。通过对原始数据进行变换,我们可以提取出更有意义的特征,提高模型的性能。在众多数据变换方法中,小波变换是一种非常有效的方法,尤其适用于处理非平稳信号和…

实战解析:SpringBoot接口防抖机制与防重复提交技巧

目录 前言 啥是防抖 思路解析 哪一类接口需要防抖? 如何确定接口是重复的? 分布式部署下如何做接口防抖? 使用共享缓存 使用分布式锁 Spring Boot与Redis深度整合入口:实战指南 具体实现 请求锁 唯一key生成 重复提交判断 Red…

scipy.sparse.csr_matrix 中的 indptr indices data

# ------------------------------------------------------------------------------- # Description: 分析理解 scipy.sparse.csr_matrix 中的 indptr & indices & data # Reference: https://blog.csdn.net/bymaymay/article/details/81389722 # Author: Sophia…

Win 进入桌面黑屏,只有鼠标

大家好,我叫秋意零。 今天,遇到一个同事电脑进入桌面黑屏,只有鼠标。经过询问沟通,说是 Windows 突然进行了自动更新,更新之后桌面就黑了屏。经过查询是一个桌面进程没启动才会导致桌面黑屏。首先分两种情况&#xff0…

STL Array、ForwardList源码剖析

STL Array、ForwardList源码剖析 参考文章: https://blog.csdn.net/weixin_45389639/article/details/121618243 array 源代码 template<typename _Tp,std::size_t _Nm> struct array {typedef _Tp value_type;typedef _Tp* pointer;typedef value_type* iterator;// Su…

【看不懂命令行、.yaml?】Hydra 库极速入门

Hydra 是一个开源的 Python 框架&#xff0c;可以简化研究和其他复杂应用程序的开发。其核心功能是通过组合动态创建层次化的配置&#xff0c;并可以通过配置文件和命令行进行覆盖。Hydra 的名字来源于它能够运行多个类似的作业 - 就像一个多头的水怪一样。 主要特性: 从多个…

首发!Llama3纯本地部署攻略!中文方法!

引言 llama3在4月19日刚刚发布&#xff0c;官方的对比结果中在开源模型中堪称世界第一&#xff0c;整好周六日有时间&#xff0c;在魔搭社区上测试一下 一、启动环境 登录魔搭社区&#xff0c;到自己的机器资源&#xff0c;可以看到&#xff0c;可选的机器配置&#xff0c; …

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)

一、本文介绍 本文给大家带来的改进机制是Haar 小波的下采样HWD替换传统下采样&#xff08;改变YOLO传统的Conv下采样&#xff09;在小波变换中&#xff0c;Haar小波作为一种基本的小波函数&#xff0c;用于将图像数据分解为多个层次的近似和细节信息&#xff0c;这是一种多分…

什么是自动化测试?如何做自动化测试?

前面介绍了功能测试和接口测试&#xff0c;在介绍接口测试时提到了实现API自动化。那具体什么是自动化&#xff0c;为什么要做自动化&#xff0c;这里我们集中总结。 一. 什么是自动化&#xff1f; 顾名思义&#xff0c;自动化测试是相对人工测试而言的&#xff0c;它是指把人…

以太网帧格式解析

以太网的正式标准是IEEE802.3&#xff0c;它规定了以太网传输的帧结构。 以太网帧格式如下图所示&#xff1a; 以太网传输数据时&#xff0c;是按照上图的格式&#xff0c;自左到右依次传输的。需要注意的是前导码和SFD不属于以太网协议的内容&#xff0c;应该是属于物理层数据…

AI检索增强生成引擎-RAGFlow-深度理解知识文档,提取真知灼见

&#x1f4a1; RAGFlow 是什么&#xff1f; RAGFlow是一款基于深度文档理解构建的开源RAG&#xff08;Retrieval-Augmented Generation&#xff09;引擎。RAGFlow个人可以为各种规模的企业及提供一套专业的RAG工作流程&#xff0c;结合针对用户群体的大语言模型&#xff08;LL…

我独自升级崛起怎么下载 一文分享我独自升级崛起游戏下载教程

我独自升级崛起怎么下载 一文分享我独自升级崛起游戏下载教程 我独自升级&#xff1a;崛起是一款由韩国漫画改编而成的热门多人网络在线联机游戏&#xff0c;这款游戏是一款的角色扮演类型游戏&#xff0c;游戏有着独一无二的剧情模式。小伙伴们在游戏中可以体验到独特的成长系…

Meta提出全新文档级嵌入框架,利用LLM来增强信息检索能力

近年来&#xff0c;基于嵌入式检索&#xff08;embedding-based search&#xff09;或密集检索&#xff08;dense retrieval&#xff09;相比传统的稀疏检索&#xff08;sparse retrieval&#xff09;或基于词袋&#xff08;bag of words&#xff09;的方法&#xff0c;已经展示…

王道C语言督学营OJ课后习题(课时20)

#include<stdio.h> int main() {printf("%3d%3d",0,13);return 0; }

图深度学习——2.图的理论知识

1.图 1.1 图的定义 图是由节点&#xff08;顶点&#xff09;和边构成的数学结构。图用于表示对象之间的关系&#xff0c;其中节点表示对象&#xff0c;边表示对象之间的关系。 一个图&#xff0c;记为 G <V, E> &#xff0c;它包括以下两个要素&#xff1a; 1.节点&am…

函数的内容

一&#xff0c;概念 封装一份可以被重复执行的代码块&#xff0c;让大量代码重复使用 二&#xff0c;函数使用 大体分两步&#xff1a;声明函数&#xff0c;调用函数 声明函数有关键字&#xff1a;function 函数名&#xff08;&#xff09;{ 函数体 } 为基本格式&#xf…

linux系统安全与应用【下】

目录 1.开关机安全控制 1.1GRUB限制 2.终端登录安全控制 2.1 限制root只在安全终端登录 2.2 禁止普通用户登录 3.弱口令检测 3.1 Joth the Ripper&#xff08;JR&#xff09; 4.网络端口扫描 4.1 nmap命令 1.开关机安全控制 1.1GRUB限制 通常情况下在系统开机进入GRU…